GemmConvOp.cpp 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "GemmConvOp.h"
#include "GemmFunctor.h"
17 18 19 20 21 22 23 24 25 26
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
 * imData = [input_channels, input_height, input_width]
 * colData = [input_channels, filter_height, filter_width,
 *            output_height, output_width]
 */
template <class T>
27
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
public:
  void operator()(const T* imData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* colData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
47
      int c_im = c / filterWidth / filterHeight;
48 49
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
50 51 52 53 54 55
          int imRowIdx = h * strideHeight + hOffset;
          int imColIdx = w * strideWidth + wOffset;
          if ((imRowIdx - paddingHeight) < 0 ||
              (imRowIdx - paddingHeight) >= inputHeight ||
              (imColIdx - paddingWidth) < 0 ||
              (imColIdx - paddingWidth) >= inputWidth) {
56 57
            colData[(c * outputHeight + h) * outputWidth + w] = T(0);
          } else {
58 59
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
60
            colData[(c * outputHeight + h) * outputWidth + w] =
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                imData[imRowIdx * inputWidth + imColIdx];
          }
        }
      }
    }
  }
};

template <class T>
class Col2ImFunctor<DEVICE_TYPE_CPU, T> {
public:
  void operator()(const T* colData,
                  int inputChannels,
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
                  int paddingWidth,
                  int outputHeight,
                  int outputWidth,
                  T* imData) {
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterWidth / filterHeight;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
          int imRowIdx = h * strideHeight + hOffset;
          int imColIdx = w * strideWidth + wOffset;
          if ((imRowIdx - paddingHeight) >= 0 &&
              (imRowIdx - paddingHeight) < inputHeight &&
              (imColIdx - paddingWidth) >= 0 &&
              (imColIdx - paddingWidth) < inputWidth) {
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
            imData[imRowIdx * inputWidth + imColIdx] +=
                colData[(c * outputHeight + h) * outputWidth + w];
103 104 105 106 107 108 109 110
          }
        }
      }
    }
  }
};

/*
111
 * \brief Forward calculation of convolution.
112 113 114 115 116 117 118 119
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

H
hedaoyuan 已提交
120 121 122 123 124 125 126 127
  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

128
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
129 130
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
131
    check(inputs, outputs);
132 133 134 135 136 137 138 139 140 141 142 143
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
144

H
hedaoyuan 已提交
145 146 147 148 149 150 151 152 153
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
154 155 156 157 158

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

159 160
    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
161
    resizeBuffer<Device>(size);
162 163
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

164 165
    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
166 167 168
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
169 170
    size_t filterOffset = filter.getElements() / groups_;

171
    for (size_t i = 0; i < batchSize; i++) {
172
      for (size_t g = 0; g < groups_; g++) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

H
Bug fix  
hedaoyuan 已提交
187
        int M = outputChannels / groups_;
188
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
189
        int K = inputChannels / groups_ * filterHeight * filterWidth;
190 191 192
        gemm(CblasNoTrans,
             CblasNoTrans,
             M,
193 194 195 196 197 198 199
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             K,
             colData,
             N,
200
             beta,
201 202
             outputData + g * outputOffset,
             N);
203
      }
H
hedaoyuan 已提交
204 205
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
206 207 208 209
    }
  }
};

210 211 212 213 214 215 216 217 218 219
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

H
hedaoyuan 已提交
220 221 222 223 224 225 226 227
  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

228 229 230
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
231
    check(inputs, outputs);
H
hedaoyuan 已提交
232 233 234
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
235
    const TensorShape& output = inputs[0].shape();
236
    const TensorShape& filter = inputs[1].shape();
237 238 239 240 241 242
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
243 244
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();

    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    Col2ImFunctor<Device, real> col2im;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
H
format  
hedaoyuan 已提交
261
    size_t outputOffset =
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasTrans,
             CblasNoTrans,
             M,
             N,
             K,
             1.0f,
             filterData + g * filterOffset,
             M,
             outputGrad + g * outputOffset,
             N,
             0.0f,
             colData,
             N);

        col2im(colData,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               inputGrad + g * inputOffset);
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
301 302 303 304 305 306 307 308 309 310 311 312 313
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

H
hedaoyuan 已提交
314 315 316 317 318 319 320 321
  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

322 323 324
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
325
    check(inputs, outputs);
326
    const TensorShape& output = inputs[0].shape();
327
    const TensorShape& input = inputs[1].shape();
328 329
    const TensorShape& filter = outputs[0].shape();

330 331 332 333 334 335 336
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

337 338 339 340
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
341 342
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();

    size_t size = inputChannels / groups_ * filterHeight * filterWidth *
                  outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    Im2ColFunctor<Device, real> im2col;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        im2col(inputData + g * inputOffset,
               inputChannels / groups_,
               inputHeight,
               inputWidth,
               filterHeight,
               filterWidth,
               strideH(),
               strideW(),
               paddingH(),
               paddingW(),
               outputHeight,
               outputWidth,
               colData);

        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
        gemm(CblasNoTrans,
             CblasTrans,
             M,
             N,
             K,
             1.0f,
             outputGrad + g * outputOffset,
             K,
             colData,
             K,
391
             i == 0 ? beta : 1.0f,
392 393 394
             filterGrad + g * filterOffset,
             N);
      }
395 396
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
397
    }
398 399 400
  }
};

401
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
402 403
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
404
#ifndef PADDLE_ONLY_CPU
405
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
406 407
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
408
#endif
409 410

}  // namespace paddle