api_impl.cc 10.4 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
25 26 27
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
28 29 30 31 32 33

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
34
 public:
X
Xin Pan 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

T
tensor-tang 已提交
60 61
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
62 63
  VLOG(3) << "Predictor::init()";

64 65 66 67 68 69 70 71 72
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

Y
Yan Chunwei 已提交
73
  if (config_.use_gpu) {
X
Xin Pan 已提交
74 75 76 77
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
78 79 80
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
81
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
82 83 84 85 86
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
87 88 89 90 91 92
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
93 94
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
105

X
Xin Pan 已提交
106
  ctx_ = executor_->Prepare(*inference_program_, 0);
107 108
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
109

X
Xin Pan 已提交
110 111 112 113 114 115
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

116
NativePaddlePredictor::~NativePaddlePredictor() {
117 118 119 120
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
121 122 123
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
124
}
125

Y
Yan Chunwei 已提交
126
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
127 128
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
129 130 131 132
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
133 134
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
135 136 137 138 139
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
140
    VLOG(4) << "setting " << i << "-th target";
X
Xin Pan 已提交
141 142 143
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
144 145
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
146 147 148 149 150 151
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
152
  VLOG(4) << "Run prepared context";
153
  executor_->RunPreparedContext(
154 155
      ctx_.get(), sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets, &fetch_targets,
T
tensor-tang 已提交
156
      false, /* don't create local scope each time*/
157
      false /* don't create variable eatch time */);
158
  VLOG(4) << "Finish prepared context";
X
Xin Pan 已提交
159
  if (!GetFetch(fetchs, output_data)) {
160
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
161 162 163 164 165 166
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
167
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
168
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
169 170
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

171
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
172
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
173 174
    return nullptr;
  }
175 176
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
177 178
}

Y
Yan Chunwei 已提交
179 180
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
181 182 183 184 185 186
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
187 188
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
189 190
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
191
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
192
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
193
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
194 195 196 197 198 199
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
200
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
201
                inputs[i].data.length());
Y
Yan Chunwei 已提交
202 203 204 205 206 207 208
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);

X
Xin Pan 已提交
209 210 211 212 213
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
214
bool NativePaddlePredictor::GetFetch(
215
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
257
          std::copy(output_ptr + start, output_ptr + end,
X
Xin Pan 已提交
258 259 260 261 262 263 264 265 266 267 268
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
269 270 271 272 273
    auto &buffer = outputs->at(i).data;
    if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
      buffer.Resize(sizeof(float) * data.size());
    }
    std::memcpy(buffer.data(), data.data(), buffer.length());
Y
Yan Chunwei 已提交
274 275 276 277
    // copy LoD
    for (const auto &level : fetchs[i].lod()) {
      outputs->at(i).lod.emplace_back(level);
    }
X
Xin Pan 已提交
278 279 280 281 282 283
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

284
template <>
285 286
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
287 288 289
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
290
    PADDLE_ENFORCE_GT(
291
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
292
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
293
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
294 295 296 297 298 299 300 301 302 303
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
304 305
  }

Y
Yan Chunwei 已提交
306
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
307
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
308 309
    return nullptr;
  }
310
  return std::move(predictor);
X
Xin Pan 已提交
311 312 313
}

}  // namespace paddle