postprocess.py 13.1 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
https://github.com/LCFractal/AIC21-MTMC/tree/main/reid/reid-matching/tools
"""

import re
import cv2
from tqdm import tqdm
import pickle
import os
import os.path as osp
from os.path import join as opj
import numpy as np
import motmetrics as mm
from functools import reduce

from .utils import parse_pt_gt, parse_pt, compare_dataframes_mtmc
from .utils import get_labels, getData, gen_new_mot
from .camera_utils import get_labels_with_camera
from .zone import Zone
from ..utils import plot_tracking

__all__ = [
    'trajectory_fusion',
    'sub_cluster',
    'gen_res',
    'print_mtmct_result',
    'get_mtmct_matching_results',
    'save_mtmct_crops',
    'save_mtmct_vis_results',
]


def trajectory_fusion(mot_feature, cid, cid_bias, use_zone=False, zone_path=''):
    cur_bias = cid_bias[cid]
    mot_list_break = {}
    if use_zone:
        zones = Zone(zone_path=zone_path)
        zones.set_cam(cid)
        mot_list = parse_pt(mot_feature, zones)
    else:
        mot_list = parse_pt(mot_feature)

    if use_zone:
        mot_list = zones.break_mot(mot_list, cid)
        mot_list = zones.filter_mot(mot_list, cid)  # filter by zone
        mot_list = zones.filter_bbox(mot_list, cid)  # filter bbox

    mot_list_break = gen_new_mot(mot_list)  # save break feature for gen result

    tid_data = dict()
    for tid in mot_list:
        tracklet = mot_list[tid]
        if len(tracklet) <= 1:
            continue
        frame_list = list(tracklet.keys())
        frame_list.sort()
        # filter area too large
        zone_list = [tracklet[f]['zone'] for f in frame_list]
        feature_list = [
            tracklet[f]['feat'] for f in frame_list
            if (tracklet[f]['bbox'][3] - tracklet[f]['bbox'][1]
                ) * (tracklet[f]['bbox'][2] - tracklet[f]['bbox'][0]) > 2000
        ]
        if len(feature_list) < 2:
            feature_list = [tracklet[f]['feat'] for f in frame_list]
        io_time = [
            cur_bias + frame_list[0] / 10., cur_bias + frame_list[-1] / 10.
        ]
        all_feat = np.array([feat for feat in feature_list])
        mean_feat = np.mean(all_feat, axis=0)
        tid_data[tid] = {
            'cam': cid,
            'tid': tid,
            'mean_feat': mean_feat,
            'zone_list': zone_list,
            'frame_list': frame_list,
            'tracklet': tracklet,
            'io_time': io_time
        }
    return tid_data, mot_list_break


def sub_cluster(cid_tid_dict,
                scene_cluster,
                use_ff=True,
                use_rerank=True,
                use_camera=False,
                use_st_filter=False):
    '''
    cid_tid_dict: all camera_id and track_id
    scene_cluster: like [41, 42, 43, 44, 45, 46] in AIC21 MTMCT S06 test videos
    '''
    assert (len(scene_cluster) != 0), "Error: scene_cluster length equals 0"
    cid_tids = sorted(
        [key for key in cid_tid_dict.keys() if key[0] in scene_cluster])
    if use_camera:
        clu = get_labels_with_camera(
            cid_tid_dict,
            cid_tids,
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_st_filter=use_st_filter)
    else:
        clu = get_labels(
            cid_tid_dict,
            cid_tids,
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_st_filter=use_st_filter)
    new_clu = list()
    for c_list in clu:
        if len(c_list) <= 1: continue
        cam_list = [cid_tids[c][0] for c in c_list]
        if len(cam_list) != len(set(cam_list)): continue
        new_clu.append([cid_tids[c] for c in c_list])
    all_clu = new_clu
    cid_tid_label = dict()
    for i, c_list in enumerate(all_clu):
        for c in c_list:
            cid_tid_label[c] = i + 1
    return cid_tid_label


def gen_res(output_dir_filename,
            scene_cluster,
            map_tid,
            mot_list_breaks,
            use_roi=False,
            roi_dir=''):
    f_w = open(output_dir_filename, 'w')
    for idx, mot_feature in enumerate(mot_list_breaks):
        cid = scene_cluster[idx]
        img_rects = parse_pt_gt(mot_feature)
        if use_roi:
            assert (roi_dir != ''), "Error: roi_dir is not empty!"
            roi = cv2.imread(os.path.join(roi_dir, f'c{cid:03d}/roi.jpg'), 0)
            height, width = roi.shape

        for fid in img_rects:
            tid_rects = img_rects[fid]
            fid = int(fid) + 1
            for tid_rect in tid_rects:
                tid = tid_rect[0]
                rect = tid_rect[1:]
                cx = 0.5 * rect[0] + 0.5 * rect[2]
                cy = 0.5 * rect[1] + 0.5 * rect[3]
                w = rect[2] - rect[0]
                w = min(w * 1.2, w + 40)
                h = rect[3] - rect[1]
                h = min(h * 1.2, h + 40)
                rect[2] -= rect[0]
                rect[3] -= rect[1]
                rect[0] = max(0, rect[0])
                rect[1] = max(0, rect[1])
                x1, y1 = max(0, cx - 0.5 * w), max(0, cy - 0.5 * h)
                if use_roi:
                    x2, y2 = min(width, cx + 0.5 * w), min(height, cy + 0.5 * h)
                else:
                    x2, y2 = cx + 0.5 * w, cy + 0.5 * h
                w, h = x2 - x1, y2 - y1
                new_rect = list(map(int, [x1, y1, w, h]))
                rect = list(map(int, rect))
                if (cid, tid) in map_tid:
                    new_tid = map_tid[(cid, tid)]
                    f_w.write(
                        str(cid) + ' ' + str(new_tid) + ' ' + str(fid) + ' ' +
                        ' '.join(map(str, new_rect)) + ' -1 -1'
                        '\n')
    print('gen_res: write file in {}'.format(output_dir_filename))
    f_w.close()


def print_mtmct_result(gt_file, pred_file):
    names = [
        'CameraId', 'Id', 'FrameId', 'X', 'Y', 'Width', 'Height', 'Xworld',
        'Yworld'
    ]
    gt = getData(gt_file, names=names)
    pred = getData(pred_file, names=names)
    summary = compare_dataframes_mtmc(gt, pred)
    print('MTMCT summary: ', summary.columns.tolist())

    formatters = {
        'idf1': '{:2.2f}'.format,
        'idp': '{:2.2f}'.format,
        'idr': '{:2.2f}'.format,
        'mota': '{:2.2f}'.format
    }
    summary = summary[['idf1', 'idp', 'idr', 'mota']]
    summary.loc[:, 'idp'] *= 100
    summary.loc[:, 'idr'] *= 100
    summary.loc[:, 'idf1'] *= 100
    summary.loc[:, 'mota'] *= 100
    print(
        mm.io.render_summary(
            summary,
            formatters=formatters,
            namemap=mm.io.motchallenge_metric_names))


def get_mtmct_matching_results(pred_mtmct_file, secs_interval=0.5,
                               video_fps=20):
    res = np.loadtxt(pred_mtmct_file)  # 'cid, tid, fid, x1, y1, w, h, -1, -1'
    carame_ids = list(map(int, np.unique(res[:, 0])))

    num_track_ids = int(np.max(res[:, 1]))
    num_frames = int(np.max(res[:, 2]))

    res = res[:, :7]
    # each line in res: 'cid, tid, fid, x1, y1, w, h'

    carame_tids = []
    carame_results = dict()
    for c_id in carame_ids:
        carame_results[c_id] = res[res[:, 0] == c_id]
        tids = np.unique(carame_results[c_id][:, 1])
        tids = list(map(int, tids))
        carame_tids.append(tids)

    # select common tids throughout each video
    common_tids = reduce(np.intersect1d, carame_tids)
    if len(common_tids) == 0:
        print(
            'No common tracked ids in these videos, please check your MOT result or select new videos.'
        )
        return None

    # get mtmct matching results by cid_tid_fid_results[c_id][t_id][f_id]
    cid_tid_fid_results = dict()
    cid_tid_to_fids = dict()
    interval = int(secs_interval * video_fps)  # preferably less than 10
    for c_id in carame_ids:
        cid_tid_fid_results[c_id] = dict()
        cid_tid_to_fids[c_id] = dict()
        for t_id in common_tids:
            tid_mask = carame_results[c_id][:, 1] == t_id
            cid_tid_fid_results[c_id][t_id] = dict()

            carame_trackid_results = carame_results[c_id][tid_mask]
            fids = np.unique(carame_trackid_results[:, 2])
            fids = fids[fids % interval == 0]
            fids = list(map(int, fids))
            cid_tid_to_fids[c_id][t_id] = fids

            for f_id in fids:
                st_frame = f_id
                ed_frame = f_id + interval

                st_mask = carame_trackid_results[:, 2] >= st_frame
                ed_mask = carame_trackid_results[:, 2] < ed_frame
                frame_mask = np.logical_and(st_mask, ed_mask)
                cid_tid_fid_results[c_id][t_id][f_id] = carame_trackid_results[
                    frame_mask]

    return carame_results, cid_tid_fid_results


def save_mtmct_crops(cid_tid_fid_res,
                     images_dir,
                     crops_dir,
                     width=300,
                     height=200):
    carame_ids = cid_tid_fid_res.keys()
    seqs_folder = os.listdir(images_dir)
    seqs = []
    for x in seqs_folder:
        if os.path.isdir(os.path.join(images_dir, x)):
            seqs.append(x)
    assert len(seqs) == len(carame_ids)
    seqs.sort()

    if not os.path.exists(crops_dir):
        os.makedirs(crops_dir)

    common_tids = list(cid_tid_fid_res[list(carame_ids)[0]].keys())

    # get crops by name 'tid_cid_fid.jpg
    for t_id in common_tids:
        for i, c_id in enumerate(carame_ids):
            infer_dir = os.path.join(images_dir, seqs[i])
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')
            all_images = os.listdir(infer_dir)
            all_images.sort()

            for f_id in cid_tid_fid_res[c_id][t_id].keys():
                frame_idx = f_id - 1 if f_id > 0 else 0
                im_path = os.path.join(infer_dir, all_images[frame_idx])
                
                im = cv2.imread(im_path)  # (H, W, 3)

                track = cid_tid_fid_res[c_id][t_id][f_id][
                    0]  # only select one track
                cid, tid, fid, x1, y1, w, h = [int(v) for v in track]
                clip = im[y1:(y1 + h), x1:(x1 + w)]
                clip = cv2.resize(clip, (width, height))

                cv2.imwrite(
                    os.path.join(crops_dir,
                                 'tid{:06d}_cid{:06d}_fid{:06d}.jpg'.format(
                                     tid, cid, fid)), clip)

            print("Finish cropping image of tracked_id {} in camera: {}".format(
                t_id, c_id))


def save_mtmct_vis_results(carame_results,
                           images_dir,
                           save_dir,
                           save_videos=False):
    # carame_results: 'cid, tid, fid, x1, y1, w, h'
    carame_ids = carame_results.keys()
    seqs_folder = os.listdir(images_dir)
    seqs = []
    for x in seqs_folder:
        if os.path.isdir(os.path.join(images_dir, x)):
            seqs.append(x)
    assert len(seqs) == len(carame_ids)
    seqs.sort()

    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    for i, c_id in enumerate(carame_ids):
        print("Start visualization for camera {} of sequence {}.".format(
            c_id, seqs[i]))
        cid_save_dir = os.path.join(save_dir, '{}'.format(seqs[i]))
        if not os.path.exists(cid_save_dir):
            os.makedirs(cid_save_dir)

        infer_dir = os.path.join(images_dir, seqs[i])
        if os.path.exists(os.path.join(infer_dir, 'img1')):
            infer_dir = os.path.join(infer_dir, 'img1')
        all_images = os.listdir(infer_dir)
        all_images.sort()

        for f_id, im_path in enumerate(all_images):
            img = cv2.imread(os.path.join(infer_dir, im_path))
            tracks = carame_results[c_id][carame_results[c_id][:, 2] == f_id]
            if tracks.shape[0] > 0:
                tracked_ids = tracks[:, 1]
                xywhs = tracks[:, 3:]
                online_im = plot_tracking(
                    img, xywhs, tracked_ids, scores=None, frame_id=f_id)
            else:
                online_im = img
                print('Frame {} of seq {} has no tracking results'.format(
                    f_id, seqs[i]))

            cv2.imwrite(
                os.path.join(cid_save_dir, '{:05d}.jpg'.format(f_id)),
                online_im)
            if f_id % 40 == 0:
                print('Processing frame {}'.format(f_id))

        if save_videos:
            output_video_path = os.path.join(cid_save_dir, '..',
                                             '{}_mtmct_vis.mp4'.format(seqs[i]))
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
                cid_save_dir, output_video_path)
            os.system(cmd_str)
            print('Save camera {} video in {}.'.format(seqs[i],
                                                       output_video_path))