pipeline.cc 13.0 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include <iostream>
#include <string>

#include "include/pipeline.h"
#include "include/postprocess.h"
#include "include/predictor.h"

namespace PaddleDetection {

void Pipeline::SetInput(const std::string& input_video) {
  input_.push_back(input_video);
}

void Pipeline::ClearInput() {
  input_.clear();
  stream_.clear();
}

void Pipeline::SelectModel(const std::string& scene,
                           const bool tiny_obj,
                           const bool is_mtmct,
                           const std::string track_model_dir,
                           const std::string det_model_dir,
                           const std::string reid_model_dir) {
  // model_dir has higher priority
  if (!track_model_dir.empty()) {
    track_model_dir_ = track_model_dir;
    return;
  }
  if (!det_model_dir.empty() && !reid_model_dir.empty()) {
    det_model_dir_ = det_model_dir;
    reid_model_dir_ = reid_model_dir;
    return;
  }

  // Single camera model, based on FairMot
  if (scene == "pedestrian") {
    if (tiny_obj) {
      track_model_dir_ = "../pedestrian_track_tiny";
    } else {
      track_model_dir_ = "../pedestrian_track";
    }
  } else if (scene != "vehicle") {
    if (tiny_obj) {
      track_model_dir_ = "../vehicle_track_tiny";
    } else {
      track_model_dir_ = "../vehicle_track";
    }
  } else if (scene == "multiclass") {
    if (tiny_obj) {
      track_model_dir_ = "../multiclass_track_tiny";
    } else {
      track_model_dir_ = "../multiclass_track";
    }
  }

  // Multi-camera model, based on PicoDet & LCNet
  if (is_mtmct && scene == "pedestrian") {
    det_model_dir_ = "../pedestrian_det";
    reid_model_dir_ = "../pedestrian_reid";
  } else if (is_mtmct && scene == "vehicle") {
    det_model_dir_ = "../vehicle_det";
    reid_model_dir_ = "../vehicle_reid";
  } else if (is_mtmct && scene == "multiclass") {
    throw "Multi-camera tracking is not supported in multiclass scene now.";
  }
}

void Pipeline::InitPredictor() {
  if (track_model_dir_.empty() && det_model_dir_.empty()) {
    throw "Predictor must receive track_model or det_model!";
  }

  if (!track_model_dir_.empty()) {
    jde_sct_ = std::make_shared<PaddleDetection::JDEPredictor>(device_,
                                                               track_model_dir_,
                                                               threshold_,
                                                               run_mode_,
                                                               gpu_id_,
                                                               use_mkldnn_,
                                                               cpu_threads_,
                                                               trt_calib_mode_);
  }
  if (!det_model_dir_.empty()) {
    sde_sct_ = std::make_shared<PaddleDetection::SDEPredictor>(device_,
                                                               det_model_dir_,
                                                               reid_model_dir_,
                                                               threshold_,
                                                               run_mode_,
                                                               gpu_id_,
                                                               use_mkldnn_,
                                                               cpu_threads_,
                                                               trt_calib_mode_);
  }
}

void Pipeline::Run() {
  if (track_model_dir_.empty() && det_model_dir_.empty()) {
    LOG(ERROR) << "Pipeline must use SelectModel before Run";
    return;
  }
  if (input_.size() == 0) {
    LOG(ERROR) << "Pipeline must use SetInput before Run";
    return;
  }

  if (!track_model_dir_.empty()) {
    // single camera
    if (input_.size() > 1) {
      throw "Single camera tracking except single video, but received %d",
          input_.size();
    }
    PredictMOT(input_[0]);
  } else {
    // multi cameras
    if (input_.size() != 2) {
      throw "Multi camera tracking except two videos, but received %d",
          input_.size();
    }
    PredictMTMCT(input_);
  }
}

void Pipeline::PredictMOT(const std::string& video_path) {
  // Open video
  cv::VideoCapture capture;
  capture.open(video_path.c_str());
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

  LOG(INFO) << "----------------------- Input info -----------------------";
  LOG(INFO) << "video_width: " << video_width;
  LOG(INFO) << "video_height: " << video_height;
  LOG(INFO) << "input fps: " << video_fps;

  // Create VideoWriter for output
  cv::VideoWriter video_out;
  std::string video_out_path = output_dir_ + OS_PATH_SEP + "mot_output.mp4";
  int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
  video_out.open(video_out_path.c_str(),
                 fcc,  // 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  PaddleDetection::MOTResult result;
  std::vector<double> det_times(3);
  std::set<int> id_set;
  std::set<int> interval_id_set;
  std::vector<int> in_id_list;
  std::vector<int> out_id_list;
  std::map<int, std::vector<float>> prev_center;
  Rect entrance = {0,
                   static_cast<float>(video_height) / 2,
                   static_cast<float>(video_width),
                   static_cast<float>(video_height) / 2};
  double times;
  double total_time;
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 0;

  std::vector<std::string> records;
  std::vector<std::string> flow_records;
  records.push_back("result format: frame_id, track_id, x1, y1, w, h\n");

  LOG(INFO) << "------------------- Predict info ------------------------";
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
    jde_sct_->Predict(imgs, threshold_, &result, &det_times);
    frame_id += 1;
    total_time = std::accumulate(det_times.begin(), det_times.end(), 0.);
    times = total_time / frame_id;

    LOG(INFO) << "frame_id: " << frame_id
              << " predict time(s): " << total_time / 1000;

    cv::Mat out_img = PaddleDetection::VisualizeTrackResult(
        frame, result, 1000. / times, frame_id);

    // TODO(qianhui): the entrance line can be set by users
    PaddleDetection::FlowStatistic(result,
                                   frame_id,
                                   secs_interval_,
                                   do_entrance_counting_,
                                   video_fps,
                                   entrance,
                                   &id_set,
                                   &interval_id_set,
                                   &in_id_list,
                                   &out_id_list,
                                   &prev_center,
                                   &flow_records);

    if (save_result_) {
      PaddleDetection::SaveMOTResult(result, frame_id, &records);
    }

    // Draw the entrance line
    if (do_entrance_counting_) {
      float line_thickness = std::max(1, static_cast<int>(video_width / 500.));
      cv::Point pt1 = cv::Point(entrance.left, entrance.top);
      cv::Point pt2 = cv::Point(entrance.right, entrance.bottom);
      cv::line(out_img, pt1, pt2, cv::Scalar(0, 255, 255), line_thickness);
    }
    video_out.write(out_img);
  }
  capture.release();
  video_out.release();
  PrintBenchmarkLog(det_times, frame_id);
  LOG(INFO) << "-------------------- Final Output info -------------------";
  LOG(INFO) << "Total frame: " << frame_id;
  LOG(INFO) << "Visualized output saved as " << video_out_path.c_str();
  if (save_result_) {
    FILE* fp;

    std::string result_output_path =
        output_dir_ + OS_PATH_SEP + "mot_output.txt";
    if ((fp = fopen(result_output_path.c_str(), "w+")) == NULL) {
      printf("Open %s error.\n", result_output_path.c_str());
      return;
    }
    for (int l; l < records.size(); ++l) {
      fprintf(fp, records[l].c_str());
    }

    fclose(fp);
    LOG(INFO) << "txt result output saved as " << result_output_path.c_str();

    result_output_path = output_dir_ + OS_PATH_SEP + "flow_statistic.txt";
    if ((fp = fopen(result_output_path.c_str(), "w+")) == NULL) {
      printf("Open %s error.\n", result_output_path);
      return;
    }
    for (int l; l < flow_records.size(); ++l) {
      fprintf(fp, flow_records[l].c_str());
    }
    fclose(fp);
    LOG(INFO) << "txt flow statistic saved as " << result_output_path.c_str();
  }
}

void Pipeline::PredictMTMCT(const std::vector<std::string> video_path) {
  throw "Not Implement!";
}

void Pipeline::RunMOTStream(const cv::Mat img,
                            const int frame_id,
                            const int video_fps,
                            const Rect entrance,
                            cv::Mat out_img,
                            std::vector<std::string>* records,
                            std::set<int>* id_set,
                            std::set<int>* interval_id_set,
                            std::vector<int>* in_id_list,
                            std::vector<int>* out_id_list,
                            std::map<int, std::vector<float>>* prev_center,
                            std::vector<std::string>* flow_records) {
  PaddleDetection::MOTResult result;
  std::vector<double> det_times(3);
  double times;
  double total_time;

  LOG(INFO) << "------------------- Predict info ------------------------";
  std::vector<cv::Mat> imgs;
  imgs.push_back(img);
  jde_sct_->Predict(imgs, threshold_, &result, &det_times);
  total_time = std::accumulate(det_times.begin(), det_times.end(), 0.);
  times = total_time / frame_id;

  LOG(INFO) << "frame_id: " << frame_id
            << " predict time(s): " << total_time / 1000;

  out_img = PaddleDetection::VisualizeTrackResult(
      img, result, 1000. / times, frame_id);

  // Count total number
  // Count in & out number
  PaddleDetection::FlowStatistic(result,
                                 frame_id,
                                 secs_interval_,
                                 do_entrance_counting_,
                                 video_fps,
                                 entrance,
                                 id_set,
                                 interval_id_set,
                                 in_id_list,
                                 out_id_list,
                                 prev_center,
                                 flow_records);

  PrintBenchmarkLog(det_times, frame_id);
  if (save_result_) {
    PaddleDetection::SaveMOTResult(result, frame_id, records);
  }
}

void Pipeline::RunMTMCTStream(const std::vector<cv::Mat> imgs,
                              std::vector<std::string>* records) {
  throw "Not Implement!";
}

void Pipeline::PrintBenchmarkLog(const std::vector<double> det_time,
                                 const int img_num) {
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << device_;
  LOG(INFO) << "ir_optim: "
            << "True";
  LOG(INFO) << "enable_memory_optim: "
            << "True";
  int has_trt = run_mode_.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: "
              << "True";
    std::string precision = run_mode_.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: "
              << "False";
    LOG(INFO) << "precision: "
              << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (use_mkldnn_ ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << cpu_threads_;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(s): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.) / 1000;
  int num = std::max(1, img_num);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / num
            << ", inference_time(ms): " << det_time[1] / num
            << ", postprocess_time(ms): " << det_time[2] / num;
}

}  // namespace PaddleDetection