transpose_op.cc 4.1 KB
Newer Older
X
xzl 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
31
    size_t x_rank = x_dims.size();
X
xzl 已提交
32
    size_t axis_size = axis.size();
X
xzl 已提交
33

X
xzl 已提交
34
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
35
                      "The input tensor's rank(%d) "
36
                      "should be equal to the axis's size(%d)",
X
xzl 已提交
37
                      x_rank, axis_size);
38 39 40 41 42 43 44 45

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          "Each element of Attribute axis should be a unique value "
          "range from 0 to (dims - 1), "
          "where the dims is the axis's size");
X
xzl 已提交
46
    }
X
xzl 已提交
47

X
xzl 已提交
48
    framework::DDim out_dims(x_dims);
49
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
50
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
51
    }
Q
Qiao Longfei 已提交
52
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
53 54 55 56 57
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
58
  TransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker)
X
xzl 已提交
59
      : OpProtoAndCheckerMaker(proto, op_checker) {
60
    AddInput(
X
xzl 已提交
61
        "X",
62
        "(Tensor)The input tensor, tensors with rank at most 6 are supported");
X
xzl 已提交
63
    AddOutput("Out", "(Tensor)The output tensor");
X
xzl 已提交
64 65
    AddAttr<std::vector<int>>(
        "axis",
66
        "(vector<int>)A list of values, and the size of the list should be "
67
        "the same with the input tensor rank, the tensor will "
X
xzl 已提交
68
        "permute the axes according the the values given");
X
xzl 已提交
69
    AddComment(R"DOC(
70 71 72
Transpose Operator.

The input tensor will be permuted according to the axis values given.
Y
ying 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
The op functions is similar to how numpy.transpose works in python.

For example: input = numpy.arange(6).reshape((2,3))
the input is:
array([[0, 1, 2],
      [3, 4, 5]])
given axis is: [1, 0]

output = input.transpose(axis)
then the output is:
array([[0, 3],
       [1, 4],
       [2, 5]])
86
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
X
xzl 已提交
87
the output tensor shape will be (N, H, W, C)
88

X
xzl 已提交
89 90 91 92 93 94 95 96
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

97
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
98 99 100 101 102 103 104 105
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
106 107 108 109 110 111 112 113 114
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
Q
QI JUN 已提交
115 116
REGISTER_OP_CPU_KERNEL(
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>);
X
xzl 已提交
117 118
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
Q
QI JUN 已提交
119
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>);