annotation_cropper.py 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import math
import random
import numpy as np
from copy import deepcopy
from typing import List, Tuple
from collections import defaultdict

from .chip_box_utils import nms, transform_chip_boxes2image_boxes
from .chip_box_utils import find_chips_to_cover_overlaped_boxes
from .chip_box_utils import transform_chip_box
from .chip_box_utils import intersection_over_box


class AnnoCropper(object):
    def __init__(self, image_target_sizes: List[int],
                 valid_box_ratio_ranges: List[List[float]],
                 chip_target_size: int, chip_target_stride: int,
                 use_neg_chip: bool = False,
                 max_neg_num_per_im: int = 8,
                 max_per_img: int = -1,
                 nms_thresh: int = 0.5
                 ):
        """
        Generate chips by chip_target_size and chip_target_stride.
        These two parameters just like kernel_size and stride in cnn.

        Each image has its raw size. After resizing, then get its target size.
        The resizing scale = target_size / raw_size.
        So are chips of the image.
        box_ratio = box_raw_size / image_raw_size = box_target_size / image_target_size
        The 'size' above mentioned is the size of long-side of image, box or chip.

        :param image_target_sizes: [2000, 1000]
        :param valid_box_ratio_ranges:  [[-1, 0.1],[0.08, -1]]
        :param chip_target_size: 500
        :param chip_target_stride: 200
        """
        self.target_sizes = image_target_sizes
        self.valid_box_ratio_ranges = valid_box_ratio_ranges
        assert len(self.target_sizes) == len(self.valid_box_ratio_ranges)
        self.scale_num = len(self.target_sizes)
        self.chip_target_size = chip_target_size  # is target size
        self.chip_target_stride = chip_target_stride  # is target stride
        self.use_neg_chip = use_neg_chip
        self.max_neg_num_per_im = max_neg_num_per_im
        self.max_per_img = max_per_img
        self.nms_thresh = nms_thresh

    def crop_anno_records(self, records: List[dict]):
        """
        The main logic:
        # foreach record(image):
        #   foreach scale:
        #     1 generate chips by chip size and stride for each scale
        #     2 get pos chips
        #     - validate boxes: current scale; h,w >= 1
        #     - find pos chips greedily by valid gt boxes in each scale
        #     - for every valid gt box, find its corresponding pos chips in each scale
        #     3 get neg chips
        #     - If given proposals, find neg boxes in them which are not in pos chips
        #     - If got neg boxes in last step, we find neg chips and assign neg boxes to neg chips such as 2.
        # 4 sample neg chips if too much each image
        #   transform this image-scale annotations to chips(pos chips&neg chips) annotations

        :param records, standard coco_record but with extra key `proposals`(Px4), which are predicted by stage1
                        model and maybe have neg boxes in them.
        :return: new_records, list of dict like
        {
            'im_file': 'fake_image1.jpg',
            'im_id': np.array([1]),  # new _global_chip_id as im_id
            'h': h,  # chip height
            'w': w,  # chip width
            'is_crowd': is_crowd,  # Nx1 -> Mx1
            'gt_class': gt_class,  # Nx1 -> Mx1
            'gt_bbox': gt_bbox,  # Nx4 -> Mx4, 4 represents [x1,y1,x2,y2]
            'gt_poly': gt_poly,  # [None]xN -> [None]xM
            'chip': [x1, y1, x2, y2]  # added
        }

        Attention:
        ------------------------------>x
        |
        |    (x1,y1)------
        |       |        |
        |       |        |
        |       |        |
        |       |        |
        |       |        |
        |       ----------
        |                 (x2,y2)
        |

        y

        If we use [x1, y1, x2, y2] to represent boxes or chips,
        (x1,y1) is the left-top point which is in the box,
        but (x2,y2) is the right-bottom point which is not in the box.
        So x1 in [0, w-1], x2 in [1, w], y1 in [0, h-1], y2 in [1,h].
        And you can use x2-x1 to get width, and you can use image[y1:y2, x1:x2] to get the box area.
        """

        self.chip_records = []
        self._global_chip_id = 1
        for r in records:
            self._cur_im_pos_chips = []  # element: (chip, boxes_idx), chip is [x1, y1, x2, y2], boxes_ids is List[int]
            self._cur_im_neg_chips = []  # element: (chip, neg_box_num)
            for scale_i in range(self.scale_num):
                self._get_current_scale_parameters(scale_i, r)

                # Cx4
                chips = self._create_chips(r['h'], r['w'], self._cur_scale)

                # # dict: chipid->[box_id, ...]
                pos_chip2boxes_idx = self._get_valid_boxes_and_pos_chips(r['gt_bbox'], chips)

                # dict: chipid->neg_box_num
                neg_chip2box_num = self._get_neg_boxes_and_chips(chips, list(pos_chip2boxes_idx.keys()), r.get('proposals', None))

                self._add_to_cur_im_chips(chips, pos_chip2boxes_idx, neg_chip2box_num)

            cur_image_records = self._trans_all_chips2annotations(r)
            self.chip_records.extend(cur_image_records)
        return self.chip_records

    def _add_to_cur_im_chips(self, chips, pos_chip2boxes_idx, neg_chip2box_num):
        for pos_chipid, boxes_idx in pos_chip2boxes_idx.items():
            chip = np.array(chips[pos_chipid])  # copy chips slice
            self._cur_im_pos_chips.append((chip, boxes_idx))

        if neg_chip2box_num is None:
            return

        for neg_chipid, neg_box_num in neg_chip2box_num.items():
            chip = np.array(chips[neg_chipid])
            self._cur_im_neg_chips.append((chip,  neg_box_num))

    def _trans_all_chips2annotations(self, r):
        gt_bbox = r['gt_bbox']
        im_file = r['im_file']
        is_crowd = r['is_crowd']
        gt_class = r['gt_class']
        # gt_poly = r['gt_poly']   # [None]xN
        # remaining keys: im_id, h, w
        chip_records = self._trans_pos_chips2annotations(im_file, gt_bbox, is_crowd, gt_class)

        if not self.use_neg_chip:
            return chip_records

        sampled_neg_chips = self._sample_neg_chips()
        neg_chip_records = self._trans_neg_chips2annotations(im_file, sampled_neg_chips)
        chip_records.extend(neg_chip_records)
        return chip_records

    def _trans_pos_chips2annotations(self, im_file, gt_bbox, is_crowd, gt_class):
        chip_records = []
        for chip, boxes_idx in self._cur_im_pos_chips:
            chip_bbox, final_boxes_idx = transform_chip_box(gt_bbox, boxes_idx, chip)
            x1, y1, x2, y2 = chip
            chip_h = y2 - y1
            chip_w = x2 - x1
            rec = {
                'im_file': im_file,
                'im_id': np.array([self._global_chip_id]),
                'h': chip_h,
                'w': chip_w,
                'gt_bbox': chip_bbox,
                'is_crowd': is_crowd[final_boxes_idx].copy(),
                'gt_class': gt_class[final_boxes_idx].copy(),
                # 'gt_poly': [None] * len(final_boxes_idx),
                'chip': chip
            }
            self._global_chip_id += 1
            chip_records.append(rec)
        return chip_records

    def _sample_neg_chips(self):
        pos_num = len(self._cur_im_pos_chips)
        neg_num = len(self._cur_im_neg_chips)
        sample_num = min(pos_num + 2, self.max_neg_num_per_im)
        assert sample_num >= 1
        if neg_num <= sample_num:
            return self._cur_im_neg_chips

        candidate_num = int(sample_num * 1.5)
        candidate_neg_chips = sorted(self._cur_im_neg_chips, key=lambda x: -x[1])[:candidate_num]
        random.shuffle(candidate_neg_chips)
        sampled_neg_chips = candidate_neg_chips[:sample_num]
        return sampled_neg_chips

    def _trans_neg_chips2annotations(self, im_file: str, sampled_neg_chips: List[Tuple]):
        chip_records = []
        for chip, neg_box_num in sampled_neg_chips:
            x1, y1, x2, y2 = chip
            chip_h = y2 - y1
            chip_w = x2 - x1
            rec = {
                'im_file': im_file,
                'im_id': np.array([self._global_chip_id]),
                'h': chip_h,
                'w': chip_w,
                'gt_bbox': np.zeros((0, 4), dtype=np.float32),
                'is_crowd': np.zeros((0, 1), dtype=np.int32),
                'gt_class': np.zeros((0, 1), dtype=np.int32),
                # 'gt_poly': [],
                'chip': chip
            }
            self._global_chip_id += 1
            chip_records.append(rec)
        return chip_records

    def _get_current_scale_parameters(self, scale_i, r):
        im_size = max(r['h'], r['w'])
        im_target_size = self.target_sizes[scale_i]
        self._cur_im_size, self._cur_im_target_size = im_size, im_target_size
        self._cur_scale = self._get_current_scale(im_target_size, im_size)
        self._cur_valid_ratio_range = self.valid_box_ratio_ranges[scale_i]

    def _get_current_scale(self, im_target_size, im_size):
        return im_target_size / im_size

    def _create_chips(self, h: int, w: int, scale: float):
        """
        Generate chips by chip_target_size and chip_target_stride.
        These two parameters just like kernel_size and stride in cnn.
        :return: chips, Cx4, xy in raw size dimension
        """
        chip_size = self.chip_target_size  # omit target for simplicity
        stride = self.chip_target_stride
        width = int(scale * w)
        height = int(scale * h)
        min_chip_location_diff = 20  # in target size

        assert chip_size >= stride
        chip_overlap = chip_size - stride
        if (width - chip_overlap) % stride > min_chip_location_diff:  # 不能被stride整除的部分比较大,则保留
            w_steps = max(1, int(math.ceil((width - chip_overlap) / stride)))
        else:  # 不能被stride整除的部分比较小,则丢弃
            w_steps = max(1, int(math.floor((width - chip_overlap) / stride)))
        if (height - chip_overlap) % stride > min_chip_location_diff:
            h_steps = max(1, int(math.ceil((height - chip_overlap) / stride)))
        else:
            h_steps = max(1, int(math.floor((height - chip_overlap) / stride)))

        chips = list()
        for j in range(h_steps):
            for i in range(w_steps):
                x1 = i * stride
                y1 = j * stride
                x2 = min(x1 + chip_size, width)
                y2 = min(y1 + chip_size, height)
                chips.append([x1, y1, x2, y2])

        # check  chip size
        for item in chips:
            if item[2] - item[0] > chip_size * 1.1 or item[3] - item[1] > chip_size * 1.1:
                raise ValueError(item)
        chips = np.array(chips, dtype=np.float)

        raw_size_chips = chips / scale
        return raw_size_chips

    def _get_valid_boxes_and_pos_chips(self, gt_bbox, chips):
        valid_ratio_range = self._cur_valid_ratio_range
        im_size = self._cur_im_size
        scale = self._cur_scale
        #   Nx4            N
        valid_boxes, valid_boxes_idx = self._validate_boxes(valid_ratio_range, im_size, gt_bbox, scale)
        # dict: chipid->[box_id, ...]
        pos_chip2boxes_idx = self._find_pos_chips(chips, valid_boxes, valid_boxes_idx)
        return pos_chip2boxes_idx

    def _validate_boxes(self, valid_ratio_range: List[float],
                        im_size: int,
                        gt_boxes: 'np.array of Nx4',
                        scale: float):
        """
        :return: valid_boxes: Nx4, valid_boxes_idx: N
        """
        ws = (gt_boxes[:, 2] - gt_boxes[:, 0]).astype(np.int32)
        hs = (gt_boxes[:, 3] - gt_boxes[:, 1]).astype(np.int32)
        maxs = np.maximum(ws, hs)
        box_ratio = maxs / im_size
        mins = np.minimum(ws, hs)
        target_mins = mins * scale

        low = valid_ratio_range[0] if valid_ratio_range[0] > 0 else 0
        high = valid_ratio_range[1] if valid_ratio_range[1] > 0 else np.finfo(np.float).max

        valid_boxes_idx = np.nonzero((low <= box_ratio) & (box_ratio < high) & (target_mins >= 2))[0]
        valid_boxes = gt_boxes[valid_boxes_idx]
        return valid_boxes, valid_boxes_idx

    def _find_pos_chips(self, chips: 'Cx4', valid_boxes: 'Bx4', valid_boxes_idx: 'B'):
        """
        :return: pos_chip2boxes_idx, dict: chipid->[box_id, ...]
        """
        iob = intersection_over_box(chips, valid_boxes)  # overlap, CxB

        iob_threshold_to_find_chips = 1.
        pos_chip_ids, _ = self._find_chips_to_cover_overlaped_boxes(iob, iob_threshold_to_find_chips)
        pos_chip_ids = set(pos_chip_ids)

        iob_threshold_to_assign_box = 0.5
        pos_chip2boxes_idx = self._assign_boxes_to_pos_chips(
            iob, iob_threshold_to_assign_box, pos_chip_ids, valid_boxes_idx)
        return pos_chip2boxes_idx

    def _find_chips_to_cover_overlaped_boxes(self, iob, overlap_threshold):
        return find_chips_to_cover_overlaped_boxes(iob, overlap_threshold)

    def _assign_boxes_to_pos_chips(self, iob, overlap_threshold, pos_chip_ids, valid_boxes_idx):
        chip_ids, box_ids = np.nonzero(iob >= overlap_threshold)
        pos_chip2boxes_idx = defaultdict(list)
        for chip_id, box_id in zip(chip_ids, box_ids):
            if chip_id not in pos_chip_ids:
                continue
            raw_gt_box_idx = valid_boxes_idx[box_id]
            pos_chip2boxes_idx[chip_id].append(raw_gt_box_idx)
        return pos_chip2boxes_idx

    def _get_neg_boxes_and_chips(self, chips: 'Cx4', pos_chip_ids: 'D', proposals: 'Px4'):
        """
        :param chips:
        :param pos_chip_ids:
        :param proposals:
        :return: neg_chip2box_num, None or dict: chipid->neg_box_num
        """
        if not self.use_neg_chip:
            return None

        # train proposals maybe None
        if proposals is None or len(proposals) < 1:
            return None

        valid_ratio_range = self._cur_valid_ratio_range
        im_size = self._cur_im_size
        scale = self._cur_scale

        valid_props, _ = self._validate_boxes(valid_ratio_range, im_size, proposals, scale)
        neg_boxes = self._find_neg_boxes(chips, pos_chip_ids, valid_props)
        neg_chip2box_num = self._find_neg_chips(chips, pos_chip_ids, neg_boxes)
        return neg_chip2box_num

    def _find_neg_boxes(self, chips: 'Cx4', pos_chip_ids: 'D', valid_props: 'Px4'):
        """
        :return: neg_boxes: Nx4
        """
        if len(pos_chip_ids) == 0:
            return valid_props

        pos_chips = chips[pos_chip_ids]
        iob = intersection_over_box(pos_chips, valid_props)
        overlap_per_prop = np.max(iob, axis=0)
        non_overlap_props_idx = overlap_per_prop < 0.5
        neg_boxes = valid_props[non_overlap_props_idx]
        return neg_boxes

    def _find_neg_chips(self, chips: 'Cx4', pos_chip_ids: 'D', neg_boxes: 'Nx4'):
        """
        :return: neg_chip2box_num, dict: chipid->neg_box_num
        """
        neg_chip_ids = np.setdiff1d(np.arange(len(chips)), pos_chip_ids)
        neg_chips = chips[neg_chip_ids]

        iob = intersection_over_box(neg_chips, neg_boxes)
        iob_threshold_to_find_chips = 0.7
        chosen_neg_chip_ids, chip_id2overlap_box_num = \
            self._find_chips_to_cover_overlaped_boxes(iob, iob_threshold_to_find_chips)

        neg_chipid2box_num = {}
        for cid in chosen_neg_chip_ids:
            box_num = chip_id2overlap_box_num[cid]
            raw_chip_id = neg_chip_ids[cid]
            neg_chipid2box_num[raw_chip_id] = box_num
        return neg_chipid2box_num

    def crop_infer_anno_records(self, records: List[dict]):
        """
        transform image record to chips record
        :param records:
        :return: new_records, list of dict like
        {
            'im_file': 'fake_image1.jpg',
            'im_id': np.array([1]),  # new _global_chip_id as im_id
            'h': h,  # chip height
            'w': w,  # chip width
            'chip': [x1, y1, x2, y2]  # added
            'ori_im_h': ori_im_h  # added, origin image height
            'ori_im_w': ori_im_w  # added, origin image width
            'scale_i': 0  # added,
        }
        """
        self.chip_records = []
        self._global_chip_id = 1  # im_id start from 1
        self._global_chip_id2img_id = {}

        for r in records:
            for scale_i in range(self.scale_num):
                self._get_current_scale_parameters(scale_i, r)
                # Cx4
                chips = self._create_chips(r['h'], r['w'], self._cur_scale)
                cur_img_chip_record = self._get_chips_records(r, chips, scale_i)
                self.chip_records.extend(cur_img_chip_record)

        return self.chip_records

    def _get_chips_records(self, rec, chips, scale_i):
        cur_img_chip_records = []
        ori_im_h = rec["h"]
        ori_im_w = rec["w"]
        im_file = rec["im_file"]
        ori_im_id = rec["im_id"]
        for id, chip in enumerate(chips):
            chip_rec = {}
            x1, y1, x2, y2 = chip
            chip_h = y2 - y1
            chip_w = x2 - x1
            chip_rec["im_file"] = im_file
            chip_rec["im_id"] = self._global_chip_id
            chip_rec["h"] = chip_h
            chip_rec["w"] = chip_w
            chip_rec["chip"] = chip
            chip_rec["ori_im_h"] = ori_im_h
            chip_rec["ori_im_w"] = ori_im_w
            chip_rec["scale_i"] = scale_i

            self._global_chip_id2img_id[self._global_chip_id] = int(ori_im_id)
            self._global_chip_id += 1
            cur_img_chip_records.append(chip_rec)

        return cur_img_chip_records

    def aggregate_chips_detections(self, results, records=None):
        """
        # 1. transform chip dets to image dets
        # 2. nms boxes per image;
        # 3. format output results
        :param results:
        :param roidb:
        :return:
        """
        results = deepcopy(results)
        records = records if records else self.chip_records
        img_id2bbox = self._transform_chip2image_bboxes(results, records)
        nms_img_id2bbox = self._nms_dets(img_id2bbox)
        aggregate_results = self._reformat_results(nms_img_id2bbox)
        return aggregate_results

    def _transform_chip2image_bboxes(self, results, records):
        # 1. Transform chip dets to image dets;
        # 2. Filter valid range;
        # 3. Reformat and Aggregate chip dets to Get scale_cls_dets
        img_id2bbox = defaultdict(list)
        for result in results:
            bbox_locs = result['bbox']
            bbox_nums = result['bbox_num']
            if len(bbox_locs) == 1 and bbox_locs[0][0] == -1:  # current batch has no detections
                # bbox_locs = array([[-1.]], dtype=float32); bbox_nums = [[1]]
                # MultiClassNMS output: If there is no detected boxes for all images, lod will be set to {1} and Out only contains one value which is -1.
                continue
            im_ids = result['im_id'] # replace with range(len(bbox_nums))

            last_bbox_num = 0
            for idx, im_id in enumerate(im_ids):

                cur_bbox_len = bbox_nums[idx]
                bboxes = bbox_locs[last_bbox_num: last_bbox_num + cur_bbox_len]
                last_bbox_num += cur_bbox_len
                # box: [num_id, score, xmin, ymin, xmax, ymax]
                if len(bboxes) == 0:  # current image has no detections
                    continue

                chip_rec = records[int(im_id) - 1]  # im_id starts from 1, type is np.int64
                image_size = max(chip_rec["ori_im_h"], chip_rec["ori_im_w"])

                bboxes = transform_chip_boxes2image_boxes(bboxes, chip_rec["chip"], chip_rec["ori_im_h"], chip_rec["ori_im_w"])

                scale_i = chip_rec["scale_i"]
                cur_scale = self._get_current_scale(self.target_sizes[scale_i], image_size)
                _, valid_boxes_idx = self._validate_boxes(self.valid_box_ratio_ranges[scale_i], image_size,
                                                                    bboxes[:, 2:], cur_scale)
                ori_img_id = self._global_chip_id2img_id[int(im_id)]

                img_id2bbox[ori_img_id].append(bboxes[valid_boxes_idx])

        return img_id2bbox

    def _nms_dets(self, img_id2bbox):
        # 1. NMS on each image-class
        # 2. Limit number of detections to MAX_PER_IMAGE if requested
        max_per_img = self.max_per_img
        nms_thresh = self.nms_thresh

        for img_id in img_id2bbox:
            box = img_id2bbox[img_id]  # list of np.array of shape [N, 6], 6 is [label, score, x1, y1, x2, y2]
            box = np.concatenate(box, axis=0)
            nms_dets = nms(box, nms_thresh)
            if max_per_img > 0:
                if len(nms_dets) > max_per_img:
                    keep = np.argsort(-nms_dets[:, 1])[:max_per_img]
                    nms_dets = nms_dets[keep]

            img_id2bbox[img_id] = nms_dets

        return img_id2bbox

    def _reformat_results(self, img_id2bbox):
        """reformat results"""
        im_ids = img_id2bbox.keys()
        results = []
        for img_id in im_ids:  # output by original im_id order
            if len(img_id2bbox[img_id]) == 0:
                bbox = np.array([[-1.,  0.,  0.,  0.,  0.,  0.]])  # edge case: no detections
                bbox_num = np.array([0])
            else:
                # np.array of shape [N, 6], 6 is [label, score, x1, y1, x2, y2]
                bbox = img_id2bbox[img_id]
                bbox_num = np.array([len(bbox)])
            res = dict(
                im_id=np.array([[img_id]]),
                bbox=bbox,
                bbox_num=bbox_num
            )
            results.append(res)
        return results

反馈
建议
客服 返回
顶部