test_fit_a_line.py 5.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17
import contextlib
18
import numpy
Y
Yang Yu 已提交
19
import unittest
20 21
import math
import sys
武毅 已提交
22
import os
Q
QI JUN 已提交
23 24


武毅 已提交
25
def train(use_cuda, save_dirname, is_local):
Y
Yang Yu 已提交
26
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
Q
QI JUN 已提交
27

Y
Yang Yu 已提交
28
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
Q
QI JUN 已提交
29

Y
Yang Yu 已提交
30
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')
Q
QI JUN 已提交
31

Y
Yang Yu 已提交
32
    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
33
    avg_cost = fluid.layers.mean(cost)
Q
QI JUN 已提交
34

Y
Yang Yu 已提交
35
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
武毅 已提交
36
    optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
Q
QI JUN 已提交
37

Y
Yang Yu 已提交
38
    BATCH_SIZE = 20
Q
QI JUN 已提交
39

Y
Yang Yu 已提交
40 41 42 43
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.uci_housing.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Q
QI JUN 已提交
44

Y
Yang Yu 已提交
45 46 47
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

武毅 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def train_loop(main_program):
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_loss_value, = exe.run(main_program,
                                          feed=feeder.feed(data),
                                          fetch_list=[avg_cost])
                print(avg_loss_value)
                if avg_loss_value[0] < 10.0:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ['x'],
                                                      [y_predict], exe)
                    return
                if math.isnan(float(avg_loss_value)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
            avg_loss_value[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
83
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
84 85 86 87 88 89 90 91
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
92 93


94 95 96 97 98 99 100
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension should be 2-D and the second dim is 13
        # The input data should be >= 0
        batch_size = 10
        tensor_x = numpy.random.uniform(0, 10,
                                        [batch_size, 13]).astype("float32")
        assert feed_target_names[0] == 'x'
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_x},
                          fetch_list=fetch_targets)
        print("infer shape: ", results[0].shape)
        print("infer results: ", results[0])
121 122


武毅 已提交
123
def main(use_cuda, is_local=True):
124 125 126 127 128 129
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "fit_a_line.inference.model"

武毅 已提交
130
    train(use_cuda, save_dirname, is_local)
131 132 133
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class TestFitALine(unittest.TestCase):
    def test_cpu(self):
        with self.program_scope_guard():
            main(use_cuda=False)

    def test_cuda(self):
        with self.program_scope_guard():
            main(use_cuda=True)

    @contextlib.contextmanager
    def program_scope_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()