distribute_transpiler.py 47.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19 20

import distributed_splitter as splitter
import framework
T
typhoonzero 已提交
21
from framework import Program, default_main_program, Variable, Parameter
22
from . import core
23 24 25 26

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
27 28


T
typhoonzero 已提交
29 30 31 32 33 34
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
35

T
typhoonzero 已提交
36 37
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
38 39


40
class UnionFind(object):
41
    """ Union-find data structure.
42

43
    Union-find is a data structure that keeps track of a set of elements partitioned
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
95 96 97 98 99
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
100
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
101 102
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
103

T
typhoonzero 已提交
104 105
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
106 107
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
108 109
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
128
        # update split_count after aligning
T
typhoonzero 已提交
129 130 131 132 133 134 135 136 137
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
138 139
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
140
                  trainer_id,
T
done  
typhoonzero 已提交
141 142 143
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
144 145
                  split_method=splitter.round_robin,
                  sync_mode=True):
T
done  
typhoonzero 已提交
146
        """
147 148
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
149
            to do parameter optimization. And the optimization graph will be put
150
            into a parameter server program.
T
done  
typhoonzero 已提交
151

152
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
153 154
            parameter servers.

T
typhoonzero 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
typhoonzero 已提交
170 171
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
172
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
173
            :type program: Program
T
done  
typhoonzero 已提交
174 175
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
176 177 178 179 180
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
Q
qiaolongfei 已提交
181 182 183
            :type sync_mode: boolean default True
            :param sync_mode: if sync_mode is set True, it means that dist transpiler
            will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
184
        """
T
typhoonzero 已提交
185
        assert (callable(split_method))
T
done  
typhoonzero 已提交
186 187
        if program is None:
            program = default_main_program()
188 189
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
190
        self.sync_mode = sync_mode
T
typhoonzero 已提交
191 192 193 194
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
195
        pserver_endpoints = pservers.split(",")
196
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
197
        self.optimize_ops, params_grads = self._get_optimize_pass()
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
220

221 222
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
223 224 225 226 227 228 229 230
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != framework.grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
255 256
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
257 258
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
259
        grad_var_mapping = self._append_split_op(program, grad_blocks)
260 261 262 263
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
264
        send_inputs = []
T
typhoonzero 已提交
265
        send_outputs = []
T
typhoonzero 已提交
266 267 268 269 270 271
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
272 273
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
274
        eplist = split_method(send_inputs, pserver_endpoints)
275
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
276 277 278 279 280 281 282 283
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
284

T
typhoonzero 已提交
285
        rpc_client_var = program.global_block().create_var(
286
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
287
            persistable=True,
T
typhoonzero 已提交
288
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
289

290
        # create send_op
T
typhoonzero 已提交
291
        program.global_block().append_op(
T
typhoonzero 已提交
292 293
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
294 295
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
296 297 298 299 300
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
301
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
302
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
303 304
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
305
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
306
            program.global_block().append_op(
T
typhoonzero 已提交
307
                type="concat",
T
typhoonzero 已提交
308
                inputs={"X": splited_var},
T
typhoonzero 已提交
309
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
310
                attrs={"axis": 0})
T
typhoonzero 已提交
311

312 313 314 315 316 317
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
318 319
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
320 321
        self.origin_program.global_block().delete_ops(self.optimize_ops)
        self.origin_program.sync_with_cpp()
322
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
323 324
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
325 326 327 328

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
329
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
330 331 332 333 334 335
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
336
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
337 338 339 340 341 342 343 344
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
345 346 347 348 349 350

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
351 352 353 354 355 356 357 358 359
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
360
            if self.sync_mode and self.trainer_num > 1:
361
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
362 363 364 365 366 367 368 369 370
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
371

Q
qiaolongfei 已提交
372
        # step 3
373
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
374 375 376
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
377
        # step 3.2
T
typhoonzero 已提交
378 379 380 381 382 383
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
384
        # step 3.3
T
typhoonzero 已提交
385
        # Iterate through the ops, and if an op and the optimize ops
386
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
387
        # append it into the sub program.
T
typhoonzero 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
404 405
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
406

Q
qiaolongfei 已提交
407
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
408
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
409
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
410 411 412 413
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

414
        # append lr decay ops to the child block if exists
415 416
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
417 418
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
419
            for _, op in enumerate(lr_ops):
420
                self._append_pserver_non_opt_ops(lr_decay_block, op)
421

T
typhoonzero 已提交
422
        # append op to the current block
Q
qiaolongfei 已提交
423
        grad_to_block_id = []
Q
qiaolongfei 已提交
424
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
425
        for idx, opt_op in enumerate(opt_op_on_pserver):
426
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
427 428
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
429
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
430
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
431 432

        # append global ops
433
        if global_ops:
Q
qiaolongfei 已提交
434 435 436
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
437 438
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
439 440 441 442 443 444 445 446 447

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

448 449 450 451
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
452
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
453
                pserver_index, pserver_program, pre_block_idx)
454
            prefetch_block = self._create_prefetch_block(
455
                pserver_index, pserver_program, table_opt_block)
456 457 458 459 460 461 462 463 464

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
465 466 467 468 469 470
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
471
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
472
                "endpoint": endpoint,
473
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
474 475
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
476
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
477
            })
478

T
typhoonzero 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
503
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
                    program.global_block().delete_ops([op])
                    program.sync_with_cpp()
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
        table_grad_name = framework.grad_var_name(self.table_name)
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
654
            type="lookup_sparse_table",
655 656 657 658 659 660 661 662 663 664 665
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
666
                                     pre_block_idx):
667 668 669 670 671 672 673 674 675 676 677
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
678 679 680 681 682 683 684 685
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
686 687 688 689 690 691 692 693 694 695 696
        grad_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[framework.grad_var_name(
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
697
        table_opt_block = pserver_program.create_block(pre_block_idx)
698 699 700
        # only support sgd now
        assert table_opt_op.type == "sgd"

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

734 735
        return table_opt_block

T
typhoonzero 已提交
736 737 738 739 740 741
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
742
        Create vars for each split.
T
typhoonzero 已提交
743 744
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
745
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
746
        """
T
typhoonzero 已提交
747
        block_map = dict()
T
typhoonzero 已提交
748
        var_mapping = dict()
T
typhoonzero 已提交
749 750 751 752 753 754
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
755
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
756
            if len(splited) == 1:
757
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
758 759 760 761 762 763 764 765
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
766
                continue
T
typhoonzero 已提交
767 768

            var_mapping[varname] = []
T
typhoonzero 已提交
769 770 771 772
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
773

T
typhoonzero 已提交
774
            for i, block in enumerate(splited):
T
typhoonzero 已提交
775
                size = block[1]
T
typhoonzero 已提交
776 777 778 779
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
780
                new_var_name = ""
781
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
782 783 784 785 786
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
787
                var = program.global_block().create_var(
T
typhoonzero 已提交
788 789
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
790
                    dtype=orig_var.dtype,
791
                    type=orig_var.type,
T
typhoonzero 已提交
792
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
793
                var_mapping[varname].append(var)
T
typhoonzero 已提交
794
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
795
        return var_mapping
T
done  
typhoonzero 已提交
796

797 798 799 800 801 802 803 804 805 806 807
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
808 809 810 811 812 813 814
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
815
            persistable=persistable)
T
done  
typhoonzero 已提交
816

T
typhoonzero 已提交
817
    def _append_split_op(self, program, gradblocks):
818
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
819
        add_suffix = False
820
        if self.trainer_num > 1:
T
typhoonzero 已提交
821
            add_suffix = True
T
typhoonzero 已提交
822
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
823
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
824
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
825 826
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
827
                continue
T
typhoonzero 已提交
828
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
829
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
830 831 832 833 834 835 836 837
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
838
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
839 840 841 842
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
843
                    type="split_byref",
844 845 846 847 848 849 850
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
851
        return var_mapping
T
done  
typhoonzero 已提交
852

T
typhoonzero 已提交
853 854 855 856
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
857
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
880 881 882 883 884
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
885 886
        else:
            orig_var_name = varname
T
typhoonzero 已提交
887 888
        return orig_var_name

889
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
890
                            grad_to_block_id, origin_program):
891
        program = optimize_block.program
T
typhoonzero 已提交
892
        pserver_block = program.global_block()
T
typhoonzero 已提交
893
        new_inputs = dict()
T
typhoonzero 已提交
894 895
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
896
        for key in opt_op.input_names:
T
typhoonzero 已提交
897 898 899
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
900
                    if same_or_split_var(
T
typhoonzero 已提交
901 902
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
903 904 905 906 907 908
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
909 910
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
911 912
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
913
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
914
                    vars2merge = []
915
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
916 917 918 919
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

920
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
921 922 923
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
924
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
925 926 927 928 929
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
930
                            attrs={"scale": 1.0 / float(self.trainer_num)})
931

T
typhoonzero 已提交
932 933 934 935 936
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
937
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
938 939 940 941
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
942
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
943
                    name=param_block.name,
T
typhoonzero 已提交
944
                    persistable=True,
T
typhoonzero 已提交
945 946 947
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
948
            elif key == "LearningRate":
949
                # learning rate variable has already be created by non-optimize op,
950
                # don't create it once again.
951 952 953 954 955 956 957 958 959 960 961
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
962

T
typhoonzero 已提交
963
        for key in opt_op.input_names:
964 965
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
966
                continue
967
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
968 969 970 971
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
972
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
973 974 975 976 977
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
978

979
        # change output's ParamOut variable
980 981
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
982
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
983

984
        optimize_block.append_op(
T
typhoonzero 已提交
985 986
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
987
            outputs=outputs,
T
typhoonzero 已提交
988 989
            attrs=opt_op.attrs)

990 991
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
992
        # Append the ops for parameters that do not need to be optimized/updated
993 994
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
995 996 997 998
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
999
            for var in varlist:
1000 1001
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1002 1003 1004 1005 1006
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1007 1008
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1009

1010 1011 1012 1013 1014
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1015
                program.global_block().clone_variable(var)
1016

1017
        optimize_block.append_op(
T
typhoonzero 已提交
1018
            type=opt_op.type,
T
typhoonzero 已提交
1019 1020
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1021 1022
            attrs=opt_op.attrs)

1023 1024 1025 1026
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1040 1041
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1042
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1043
        op2_output_names = op2.desc.output_arg_names()
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1063
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1064 1065
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1066 1067 1068 1069 1070 1071 1072
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1073
        if op.input("Param")[0] in param_names:
1074 1075 1076
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1077
                param = op.input("Param")[0]
T
typhoonzero 已提交
1078
                if same_or_split_var(n, param) and n != param:
1079 1080 1081
                    return True
            return False

T
typhoonzero 已提交
1082
    def _get_input_map_from_op(self, varmap, op):
1083
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1096
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1118
        block = self.origin_program.global_block()
1119 1120 1121 1122 1123
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1137 1138
                    # we only need to append op for once
                    break
1139
        return lr_ops
Y
Yancey1989 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1152 1153
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1154 1155 1156
            else:
                pass
        return opt_ops, params_grads
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False