spectral_norm_op.h 5.1 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>;
using IndexPair = Eigen::IndexPair<int>;

static inline void ResizeWeight(Tensor* weight_mat, const int dim) {
  auto weight_dims = weight_mat->dims();
  int h = 1;
  int w = 1;
  for (int i = 0; i < weight_dims.size(); i++) {
    if (i <= dim) {
      h *= weight_dims[i];
    } else {
      w *= weight_dims[i];
    }
  }
  *weight_mat = weight_mat->Resize({h, w});
}

template <typename DeviceContext, typename T>
static inline void CalcMatrixSigmaAndNormWeight(
    Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
    const float eps, const framework::ExecutionContext& ctx) {
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
49
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
D
dengkaipeng 已提交
50 51
  auto sigma_t = EigenTensor<T, 2>::From(*sigma);
  auto weight_t = EigenTensor<T, 2>::From(*weight);
52 53
  auto u_t = EigenTensor<T, 2>::From(*u);
  auto v_t = EigenTensor<T, 2>::From(*v);
D
dengkaipeng 已提交
54 55 56 57

  const int h = weight->dims()[0];
  const int w = weight->dims()[1];

58 59
  // LOG(ERROR) << "weight: " << weight_t;
  // LOG(ERROR) << "weight_trans: " << weight_trans_t;
D
dengkaipeng 已提交
60
  for (int i = 0; i < power_iters; i++) {
61 62 63
    // v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
    blas.MatMul(*weight, true, *u, false, T(1), v, T(0));
    // LOG(ERROR) << "iter v: " << v_t;
D
dengkaipeng 已提交
64 65 66
    auto v_t_norm =
        v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
            Array1(w));
67
    // LOG(ERROR) << "iter v_norm: " << v_t_norm;
D
dengkaipeng 已提交
68
    v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
69 70 71 72
    // LOG(ERROR) << "iter norm v: " << v_t;
    // u_t.device(place) = weight_t.contract(v_t, product_dims);
    blas.MatMul(*weight, false, *v, false, T(1), u, T(0));
    // LOG(ERROR) << "iter u: " << u_t;
D
dengkaipeng 已提交
73 74 75 76
    auto u_t_norm =
        u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
            Array1(h));
    u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
77
    // LOG(ERROR) << "iter norm u: " << u_t;
D
dengkaipeng 已提交
78
  }
79 80 81 82 83 84 85 86 87
  // LOG(ERROR) << "h" << h << "w" << w;
  // LOG(ERROR) << "u: " << u_t;
  // LOG(ERROR) << "v: " << v_t;
  Tensor weight_v;
  weight_v.mutable_data<T>({h, 1}, ctx.GetPlace());
  blas.MatMul(*weight, false, *v, false, T(1), &weight_v, T(0));
  auto weight_v_t = EigenTensor<T, 2>::From(weight_v);
  // LOG(ERROR) << "weight_v: " << weight_v_t;
  sigma_t.device(place) = (u_t * weight_v_t)
D
dengkaipeng 已提交
88 89 90 91
                              .sum()
                              .eval()
                              .reshape(Array2(1, 1))
                              .broadcast(Array2(h, w));
92 93
  // LOG(ERROR) << "weight: " << weight_t;
  // LOG(ERROR) << "sigma: " << sigma_t;
D
dengkaipeng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  weight_t.device(place) = weight_t / sigma_t;
}

template <typename DeviceContext, typename T>
class SpectralNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto weight = ctx.Input<Tensor>("Weight");
    auto u = ctx.Input<Tensor>("U");
    auto v = ctx.Input<Tensor>("V");
    auto out = ctx.Output<Tensor>("Out");

    int dim = ctx.Attr<int>("dim");
    int power_iters = ctx.Attr<int>("power_iters");
    float eps = ctx.Attr<float>("eps");

110 111 112
    const int h = weight->dims()[0];
    const int w = weight->dims()[1];

D
dengkaipeng 已提交
113 114 115 116 117 118 119 120 121 122
    Tensor weight_mat;
    TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
    ResizeWeight(&weight_mat, dim);

    Tensor sigma;
    sigma.mutable_data<T>(weight->dims(), ctx.GetPlace());
    Tensor uu, vv;
    TensorCopySync(*u, ctx.GetPlace(), &uu);
    TensorCopySync(*v, ctx.GetPlace(), &vv);
    CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
123 124
        &sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
        power_iters, eps, ctx);
D
dengkaipeng 已提交
125 126 127 128 129 130 131 132 133 134 135 136
    TensorCopySync(weight_mat, ctx.GetPlace(), out);
  }
};

template <typename DeviceContext, typename T>
class SpectralNormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {}
};

}  // namespace operators
}  // namespace paddle