test_optimizer.py 18.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

Q
Qiao Longfei 已提交
17 18
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.optimizer as optimizer
F
fengjiayi 已提交
19
from paddle.v2.fluid.backward import append_backward
Q
Qiao Longfei 已提交
20 21 22 23


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
Qiao Longfei 已提交
24
        init_program = framework.Program()
25
        program = framework.Program()
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
33 34
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
35
        block.append_op(
Q
Qiao Longfei 已提交
36 37 38 39 40
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
41 42
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
43
        sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
T
fix ci  
typhoonzero 已提交
44
        opts, _ = sgd_optimizer.minimize(mean_out, init_program)
Y
Yancey1989 已提交
45 46 47
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "sgd"])
Q
Qiao Longfei 已提交
48

49
    def test_sgd_optimizer_with_global_step(self):
Q
Qiao Longfei 已提交
50
        init_program = framework.Program()
51 52 53 54 55 56 57 58 59 60 61 62 63 64
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
65 66 67 68
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
69 70
        global_step = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="step")
Q
Qiao Longfei 已提交
71
        learning_rate = 0.01
72
        sgd_optimizer = optimizer.SGDOptimizer(
Q
Qiao Longfei 已提交
73
            learning_rate=learning_rate, global_step=global_step)
T
fix ci  
typhoonzero 已提交
74
        opts, _ = sgd_optimizer.minimize(mean_out, init_program)
Y
Yancey1989 已提交
75 76 77 78
        self.assertEqual(len(opts), 4)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "sgd", "increment"])
79

Q
Qiao Longfei 已提交
80 81 82 83 84 85
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 1)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

Q
Qiao Longfei 已提交
86

87 88 89 90 91 92 93 94
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

95
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
96
        init_program = framework.Program()
97 98 99 100 101 102 103 104 105 106 107 108 109 110
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
111 112 113
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
114 115 116 117
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
118
        params_grads = append_backward(mean_out)
119 120
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
121 122
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
123 124 125 126
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
127
        self.assertFalse(sgd_op.attr('use_nesterov'))
128 129 130 131 132 133 134 135 136

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
137 138 139 140 141 142 143 144
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

145
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
146
        init_program = framework.Program()
147 148 149 150 151 152 153 154 155 156 157 158 159 160
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
161 162 163 164
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
165
        learning_rate = 0.01
166
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
167
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
168
        params_grads = append_backward(mean_out)
169 170
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
171 172
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
173 174 175 176
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
177
        self.assertTrue(sgd_op.attr('use_nesterov'))
178 179 180 181 182 183 184 185 186

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
187 188 189 190 191 192 193 194
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

195

196 197 198 199 200 201 202 203 204
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
205
        init_program = framework.Program()
206 207 208 209 210 211 212 213 214 215 216 217 218 219
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
220 221 222 223
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
224 225 226
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
227
        params_grads = append_backward(mean_out)
228 229
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
230 231
        opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
                                                          init_program)
Y
Yancey1989 已提交
232 233 234
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "adagrad"])
235

236
        # Check accumulators
237 238 239 240 241 242 243
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
244 245 246 247 248 249 250 251
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

252

253 254 255 256 257 258 259 260 261 262 263 264
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
265
        init_program = framework.Program()
266 267 268 269 270 271 272 273 274 275 276 277 278 279
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
280 281 282 283
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
284
        learning_rate = 0.01
285
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
286
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
287
        params_grads = append_backward(mean_out)
288 289
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
290 291
        opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
                                                       init_program)
Y
Yancey1989 已提交
292 293 294 295
        self.assertEqual(len(opts), 5)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adam", "scale", "scale"])
296 297 298 299 300 301 302 303 304 305 306 307 308

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
309 310 311 312 313 314
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

315

316 317 318 319 320 321 322 323 324 325 326 327
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
328
        init_program = framework.Program()
329 330 331 332 333 334 335 336 337 338 339 340 341 342
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
343 344 345 346
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
347
        learning_rate = 0.01
348
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
349
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
350
        params_grads = append_backward(mean_out)
351 352
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
353 354
        opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
                                                         init_program)
Y
Yancey1989 已提交
355 356 357 358
        self.assertEqual(len(opts), 4)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adamax", "scale"])
359 360 361 362 363 364 365 366 367 368 369 370 371

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
372 373 374 375 376 377
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
403 404 405 406
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
407 408 409
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
410
        params_grads = append_backward(mean_out)
411 412 413 414
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
        opts = decayed_adagrad_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
415 416 417 418
        self.assertEqual(len(opts), 3)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "decayed_adagrad"])
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)


Q
Qiao Longfei 已提交
438 439
if __name__ == '__main__':
    unittest.main()