cpu_vec_test.cc 6.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <sys/time.h>
#include <cmath>
T
tensor-tang 已提交
17
#include <cstring>
18
#include <random>
T
tensor-tang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

#include "paddle/fluid/operators/math/cpu_vec.h"

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}
constexpr int repeat = 1000;

template <typename T>
inline T _sigmoid(T x) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  T tmp = (x < min) ? min : ((x > max) ? max : x);
T
tensor-tang 已提交
38
  return static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
T
tensor-tang 已提交
39 40 41 42
}

template <typename T>
inline T _tanh(T x) {
T
tensor-tang 已提交
43 44
  return static_cast<T>(2) * _sigmoid<T>(static_cast<T>(2) * x) -
         static_cast<T>(1);
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
}

template <typename T>
void ref_sigmoid(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _sigmoid(x[i]);
  }
}

template <typename T>
void ref_tanh(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _tanh(x[i]);
  }
}
template <typename T>
void ref_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <typename T>
void RandomVec(const int n, T* a) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  const T lower = static_cast<T>(-20.f);
T
tensor-tang 已提交
73
  const T upper = static_cast<T>(20.f);
T
tensor-tang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void TestAndBench(const int n, std::function<void(const int, const T*, T*)> tgt,
                  std::function<void(const int, const T*, T*)> ref) {
  std::vector<T> x(n);
  std::vector<T> ytgt(n), yref(n);
  RandomVec<T>(n, x.data());

  const T* x_data = x.data();
  T* ytgt_data = ytgt.data();
  T* yref_data = yref.data();
  auto st = GetCurrentUS();
  for (int i = 0; i < repeat; ++i) {
    tgt(n, x_data, ytgt_data);
  }
  auto mt = GetCurrentUS();
  for (int i = 0; i < repeat; ++i) {
    ref(n, x_data, yref_data);
  }
  auto et = GetCurrentUS();

  VLOG(3) << "Vec size " << n << ": refer takes: " << (et - mt) / repeat
          << " us, tgt takes: " << (mt - st) / repeat;
  for (int i = 0; i < n; ++i) {
    EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, sigmoid) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
109
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
110 111 112 113 114 115 116 117 118 119 120 121
    TestAndBench<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
    TestAndBench<float>(sz, vec_sigmoid<float, jit::avx>, ref_sigmoid<float>);
    TestAndBench<float>(sz, vec_sigmoid<float, jit::avx2>, ref_sigmoid<float>);
    TestAndBench<float>(sz, vec_sigmoid<float, jit::avx512_common>,
                        ref_sigmoid<float>);
  }
  TestAndBench<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}

TEST(CpuVecTest, tanh) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
122
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
123 124 125 126 127 128 129 130 131 132 133 134
    TestAndBench<float>(sz, vec_tanh<float>, ref_tanh<float>);
    TestAndBench<float>(sz, vec_tanh<float, jit::avx>, ref_tanh<float>);
    TestAndBench<float>(sz, vec_tanh<float, jit::avx2>, ref_tanh<float>);
    TestAndBench<float>(sz, vec_tanh<float, jit::avx512_common>,
                        ref_tanh<float>);
  }
  TestAndBench<double>(30, vec_tanh<double>, ref_tanh<double>);
}

TEST(CpuVecTest, relu) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
135
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
136 137 138 139 140 141 142 143
    TestAndBench<float>(sz, vec_relu<float>, ref_relu<float>);
    TestAndBench<float>(sz, vec_relu<float, jit::avx>, ref_relu<float>);
    TestAndBench<float>(sz, vec_relu<float, jit::avx2>, ref_relu<float>);
    TestAndBench<float>(sz, vec_relu<float, jit::avx512_common>,
                        ref_relu<float>);
  }
  TestAndBench<double>(30, vec_relu<double>, ref_relu<double>);
}
T
tensor-tang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

template <typename T>
void TestInplace(const int n, std::function<void(const int, const T*, T*)> tgt,
                 std::function<void(const int, const T*, T*)> ref) {
  std::vector<T> x(n);
  std::vector<T> ytgt(n), yref(n);
  RandomVec<T>(n, x.data());

  const T* x_data = x.data();
  T* yref_data = yref.data();
  T* ytgt_data = ytgt.data();
  std::memcpy(yref_data, x_data, sizeof(T) * n);
  std::memcpy(ytgt_data, x_data, sizeof(T) * n);

  ref(n, yref_data, yref_data);
  tgt(n, ytgt_data, ytgt_data);

  for (int i = 0; i < n; ++i) {
    EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, inplace_sigmoid) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
    TestInplace<float>(sz, vec_sigmoid<float, jit::avx>, ref_sigmoid<float>);
    TestInplace<float>(sz, vec_sigmoid<float, jit::avx2>, ref_sigmoid<float>);
    TestInplace<float>(sz, vec_sigmoid<float, jit::avx512_common>,
                       ref_sigmoid<float>);
  }
  TestInplace<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}

TEST(CpuVecTest, inplace_tanh) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_tanh<float>, ref_tanh<float>);
    TestInplace<float>(sz, vec_tanh<float, jit::avx>, ref_tanh<float>);
    TestInplace<float>(sz, vec_tanh<float, jit::avx2>, ref_tanh<float>);
    TestInplace<float>(sz, vec_tanh<float, jit::avx512_common>,
                       ref_tanh<float>);
  }
  TestInplace<double>(30, vec_tanh<double>, ref_tanh<double>);
}

TEST(CpuVecTest, inplace_relu) {
  namespace jit = paddle::platform::jit;
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_relu<float>, ref_relu<float>);
    TestInplace<float>(sz, vec_relu<float, jit::avx>, ref_relu<float>);
    TestInplace<float>(sz, vec_relu<float, jit::avx2>, ref_relu<float>);
    TestInplace<float>(sz, vec_relu<float, jit::avx512_common>,
                       ref_relu<float>);
  }
  TestInplace<double>(30, vec_relu<double>, ref_relu<double>);
}