interpolate_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

23
class InterpolateOp : public framework::OperatorWithKernel {
24 25 26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
30
                   "Input(X) of InterpolateOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
32 33 34 35 36 37
                   "Output(Out) of InterpolationOp should not be null.");

    auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
    PADDLE_ENFORCE(
        "bilinear" == interp_method || "nearest" == interp_method,
        "Interpolation method can only be \"bilinear\" or \"nearest\".");
38 39 40 41 42 43

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");

44
    if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
45 46 47 48
      auto out_size_dim = ctx->GetInputDim("OutSize");
      PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                        "OutSize's dimension size must be 1");
      PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
49 50
      ctx->ShareLoD("X", "Out");
      return;
51
    }
52 53 54 55 56 57 58

    if (ctx->IsRuntime() || (out_h > 0 && out_w > 0)) {
      std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
      ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
    } else {
      ctx->SetOutputDim("Out", dim_x);
    }
59 60 61 62 63
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
64 65
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
66 67 68
  }
};

69
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
70 71 72
 public:
  void Make() override {
    AddInput("X",
73 74
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N,  C, H, w].");
75
    AddInput("OutSize",
76
             "This is a 1-D tensor with two numbers to specify output size. "
77 78
             "The first number is height and the second number is width.")
        .AsDispensable();
79 80 81
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a 4-D tensor with shape of [N, C, H, W].");
82

83 84
    AddAttr<int>("out_h", "output height of interpolate op.");
    AddAttr<int>("out_w", "output width of interpolate op.");
85 86 87 88 89 90
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
                         "bilinear interpolation and \"nearest\" for nearest "
                         "neighbor interpolation.")
        .SetDefault("bilinear");
91 92
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
93
        "an optional bool. Defaults to True. "
94 95
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
96
        "If False, are not aligned")
97 98
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
99
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
100 101
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
102
        .SetDefault(1);
103
    AddComment(R"DOC(
104 105 106 107 108
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

109
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
110
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
111 112
          direction) on input tensor.
            
113 114 115 116 117 118
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

T
tink2123 已提交
119
          Align_corners and align_mode are optinal parameters,the calculation method 
120 121 122 123
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
124
          For scale:
125 126 127 128 129 130 131 132 133 134 135 136
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
137
          if:
138 139 140 141 142 143 144 145
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
146
          else:
147 148 149 150 151 152 153 154 155 156
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
157
          if:
158 159 160 161 162 163 164 165 166
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
167
          else:
168 169 170 171 172 173 174 175 176
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          

177
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
178
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
179 180 181

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
182 183 184 185
         )DOC");
  }
};

186
class InterpolateOpGrad : public framework::OperatorWithKernel {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
203 204 205
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
206 207 208
  }
};

S
sneaxiy 已提交
209 210 211 212 213 214 215 216 217
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("X", Input("X"));
S
sneaxiy 已提交
218 219 220
    if (ForwardOp().Inputs().count("OutSize") > 0) {
      op->SetInput("OutSize", Input("OutSize"));
    }
S
sneaxiy 已提交
221 222 223 224 225 226 227 228 229 230
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
                                      "X");

231 232 233 234
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
235
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
236 237 238
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
239
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
240 241 242
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
243 244 245 246 247 248
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
249 250
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
251
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
252
                       ops::InterpolateGradKernel<double>);