test_imperative_gnn.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
X
polish  
Xin Pan 已提交
24
from paddle.fluid.optimizer import AdamOptimizer
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope
from paddle.fluid.imperative.base import to_variable


def gen_data():
    pass


class GraphConv(fluid.imperative.Layer):
    def __init__(self, name_scope, in_features, out_features):
        super(GraphConv, self).__init__(name_scope)

        self._in_features = in_features
        self._out_features = out_features
        self.weight = self.create_parameter(
            attr=None,
            dtype='float32',
            shape=[self._in_features, self._out_features])
        self.bias = self.create_parameter(
            attr=None, dtype='float32', shape=[self._out_features])

    def forward(self, features, adj):
        support = fluid.layers.matmul(features, self.weight)
        # TODO(panyx0718): sparse matmul?
        return fluid.layers.matmul(adj, support) + self.bias


class GCN(fluid.imperative.Layer):
    def __init__(self, name_scope, num_hidden):
        super(GCN, self).__init__(name_scope)
        self.gc = GraphConv(self.full_name(), num_hidden, 32)
        self.gc2 = GraphConv(self.full_name(), 32, 10)

    def forward(self, x, adj):
        x = fluid.layers.relu(self.gc(x, adj))
        return self.gc2(x, adj)


class TestImperativeGNN(unittest.TestCase):
    def test_gnn_float32(self):
        seed = 90

X
polish  
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed

        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
            features = fluid.layers.data(
                name='features',
                shape=[1, 100, 50],
                dtype='float32',
                append_batch_size=False)
            # Use selected rows when it's supported.
            adj = fluid.layers.data(
                name='adj',
                shape=[1, 100, 100],
                dtype='float32',
                append_batch_size=False)
            labels = fluid.layers.data(
                name='labels',
                shape=[100, 1],
                dtype='int64',
                append_batch_size=False)

            model = GCN('test_gcn', 50)
            logits = model(features, adj)
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits, labels)
            loss = fluid.layers.reduce_sum(loss)

            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
            static_loss = exe.run(feed={
                'features': np.zeros(
                    [1, 100, 50], dtype=np.float32),
                'adj': np.zeros(
                    [1, 100, 100], dtype=np.float32),
                'labels': np.zeros(
                    [100, 1], dtype=np.int64)
            },
                                  fetch_list=[loss])[0]

            static_weight = np.array(
                scope.find_var(model.gc.weight.name).get_tensor())

118 119 120 121 122
        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            features = np.zeros([1, 100, 50], dtype=np.float32)
X
polish  
Xin Pan 已提交
123
            # Use selected rows when it's supported.
124 125 126 127 128 129 130 131 132 133 134
            adj = np.zeros([1, 100, 100], dtype=np.float32)
            labels = np.zeros([100, 1], dtype=np.int64)

            model = GCN('test_gcn', 50)
            logits = model(to_variable(features), to_variable(adj))
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits,
                                                           to_variable(labels))
            loss = fluid.layers.reduce_sum(loss)
X
polish  
Xin Pan 已提交
135 136 137 138 139 140
            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
            self.assertEqual(static_loss, loss._numpy())
            self.assertTrue(
                np.allclose(static_weight, model.gc.weight._numpy()))
            sys.stderr.write('%s %s\n' % (static_loss, loss._numpy()))
141 142 143 144


if __name__ == '__main__':
    unittest.main()