main.cc 13.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

G
Guanghua Yu 已提交
17
#include <dirent.h>
Q
qingqing01 已提交
18 19 20
#include <iostream>
#include <string>
#include <vector>
G
Guanghua Yu 已提交
21
#include <numeric>
Q
qingqing01 已提交
22 23
#include <sys/types.h>
#include <sys/stat.h>
C
cnn 已提交
24
#include <math.h>
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif

#include "include/object_detector.h"
35
#include <gflags/gflags.h>
Q
qingqing01 已提交
36 37 38


DEFINE_string(model_dir, "", "Path of inference model");
G
Guanghua Yu 已提交
39 40
DEFINE_string(image_file, "", "Path of input image");
DEFINE_string(image_dir, "", "Dir of input image, `image_file` has a higher priority.");
C
cnn 已提交
41
DEFINE_int32(batch_size, 1, "batch_size");
G
Guanghua Yu 已提交
42 43
DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority.");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
Q
qingqing01 已提交
44
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
G
Guanghua Yu 已提交
45 46
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
47
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)");
Q
qingqing01 已提交
48 49
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
G
Guanghua Yu 已提交
50 51
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
52 53 54 55
DEFINE_bool(use_dynamic_shape, false, "Trt use dynamic shape or not");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
G
Guanghua Yu 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True");

void PrintBenchmarkLog(std::vector<double> det_time, int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: " << "True";
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: " << "False";
    LOG(INFO) << "precision: " << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << 1;
  LOG(INFO) << "input_shape: " << "dynamic shape";
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1);
  LOG(INFO) << "model_name: " << FLAGS_model_dir.substr(FLAGS_model_dir.find_last_of('/') + 1);
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(s): "
            << std::accumulate(det_time.begin(), det_time.end(), 0);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2];
}
Q
qingqing01 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

G
Guanghua Yu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
void GetAllFiles(const char *dir_name,
                          std::vector<std::string> &all_inputs) {
  if (NULL == dir_name) {
    std::cout << " dir_name is null ! " << std::endl;
    return;
  }
  struct stat s;
  lstat(dir_name, &s);
  if (!S_ISDIR(s.st_mode)) {
    std::cout << "dir_name is not a valid directory !" << std::endl;
    all_inputs.push_back(dir_name);
    return;
  } else {
    struct dirent *filename; // return value for readdir()
    DIR *dir;                // return value for opendir()
    dir = opendir(dir_name);
    if (NULL == dir) {
      std::cout << "Can not open dir " << dir_name << std::endl;
      return;
    }
    std::cout << "Successfully opened the dir !" << std::endl;
    while ((filename = readdir(dir)) != NULL) {
      if (strcmp(filename->d_name, ".") == 0 ||
          strcmp(filename->d_name, "..") == 0)
        continue;
      all_inputs.push_back(dir_name + std::string("/") +
                           std::string(filename->d_name));
    }
  }
}

Q
qingqing01 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det) {
  // Open video
  cv::VideoCapture capture;
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

  // Create VideoWriter for output
  cv::VideoWriter video_out;
  std::string video_out_path = "output.mp4";
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
C
cnn 已提交
194
  std::vector<int> bbox_num;
G
Guanghua Yu 已提交
195
  std::vector<double> det_times;
Q
qingqing01 已提交
196 197 198 199 200
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 0;
C
cnn 已提交
201
  bool is_rbox = false;
Q
qingqing01 已提交
202 203 204 205
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
C
cnn 已提交
206 207 208
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
    det->Predict(imgs, 0.5, 0, 1, &result, &bbox_num, &det_times);
Q
qingqing01 已提交
209
    for (const auto& item : result) {
C
cnn 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
      if (item.rect.size() > 6){
      is_rbox = true;
      printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3],
          item.rect[4],
          item.rect[5],
          item.rect[6],
          item.rect[7]);
      }
      else{
        printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3]);
      }
   }

   cv::Mat out_im = PaddleDetection::VisualizeResult(
        frame, result, labels, colormap, is_rbox);

Q
qingqing01 已提交
238 239 240 241 242 243 244
    video_out.write(out_im);
    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

C
cnn 已提交
245 246
void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size,
Q
qingqing01 已提交
247 248 249 250
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  const std::string& output_dir = "output") {
G
Guanghua Yu 已提交
251
  std::vector<double> det_t = {0, 0, 0};
C
cnn 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  printf("total images = %d, batch_size = %d, total steps = %d\n",
                all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
    
G
Guanghua Yu 已提交
267 268
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
C
cnn 已提交
269
    std::vector<int> bbox_num;
G
Guanghua Yu 已提交
270
    std::vector<double> det_times;
C
cnn 已提交
271
    bool is_rbox = false;
G
Guanghua Yu 已提交
272
    if (run_benchmark) {
C
cnn 已提交
273
      det->Predict(batch_imgs, threshold, 10, 10, &result, &bbox_num,  &det_times);
G
Guanghua Yu 已提交
274
    } else {
C
cnn 已提交
275 276 277 278 279 280 281 282 283 284
      det->Predict(batch_imgs, 0.5, 0, 1, &result, &bbox_num, &det_times);
      // get labels and colormap
      auto labels = det->GetLabelList();
      auto colormap = PaddleDetection::GenerateColorMap(labels.size());

      int item_start_idx = 0;
      for (int i = 0; i < left_image_cnt; i++) {
        std::cout << all_img_paths.at(idx * batch_size + i) << "result" << std::endl;
        if (bbox_num[i] <= 1) {
            continue;
C
cnn 已提交
285
        }
C
cnn 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        for (int j = 0; j < bbox_num[i]; j++) {
          PaddleDetection::ObjectResult item = result[item_start_idx + j];
          if (item.rect.size() > 6){
            is_rbox = true;
            printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
              item.class_id,
              item.confidence,
              item.rect[0],
              item.rect[1],
              item.rect[2],
              item.rect[3],
              item.rect[4],
              item.rect[5],
              item.rect[6],
              item.rect[7]);
          }
          else{
            printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
              item.class_id,
              item.confidence,
              item.rect[0],
              item.rect[1],
              item.rect[2],
              item.rect[3]);
          }
C
cnn 已提交
311
        }
C
cnn 已提交
312
        item_start_idx = item_start_idx + bbox_num[i];
G
Guanghua Yu 已提交
313 314
      }
      // Visualization result
C
cnn 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
      int bbox_idx = 0;
      for (int bs = 0; bs < batch_imgs.size(); bs++) {
        if (bbox_num[bs] <= 1) {
            continue;
        }
        cv::Mat im = batch_imgs[bs];
        std::vector<PaddleDetection::ObjectResult> im_result;
        for (int k = 0; k < bbox_num[bs]; k++) {
          im_result.push_back(result[bbox_idx+k]);
        }
        bbox_idx += bbox_num[bs];
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::vector<int> compression_params;
        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
        compression_params.push_back(95);
        std::string output_path(output_dir);
        if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
          output_path += OS_PATH_SEP;
        }
        std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
        output_path += image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::imwrite(output_path, vis_img, compression_params);
        printf("Visualized output saved as %s\n", output_path.c_str());
G
Guanghua Yu 已提交
339
      }
Q
qingqing01 已提交
340
    }
G
Guanghua Yu 已提交
341 342 343
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
Q
qingqing01 已提交
344
  }
C
cnn 已提交
345
  PrintBenchmarkLog(det_t, all_img_paths.size());
Q
qingqing01 已提交
346 347 348 349 350 351
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
G
Guanghua Yu 已提交
352
      || (FLAGS_image_file.empty() && FLAGS_image_dir.empty() && FLAGS_video_file.empty())) {
Q
qingqing01 已提交
353
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
G
Guanghua Yu 已提交
354
                << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl;
Q
qingqing01 已提交
355 356 357
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
358 359
      || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
Q
qingqing01 已提交
360 361 362
    return -1;
  }
  // Load model and create a object detector
G
Guanghua Yu 已提交
363 364 365
  PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_mkldnn,
                        FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_gpu_id, FLAGS_use_dynamic_shape,
                        FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode);
Q
qingqing01 已提交
366
  // Do inference on input video or image
G
Guanghua Yu 已提交
367 368 369
  if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) {
    PredictVideo(FLAGS_video_file, &det);
  } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) {
Q
qingqing01 已提交
370 371 372
    if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
    }
C
cnn 已提交
373
    std::vector<std::string> all_imgs;
G
Guanghua Yu 已提交
374
    if (!FLAGS_image_file.empty()) {
C
cnn 已提交
375 376 377 378 379
      all_imgs.push_back(FLAGS_image_file);
      if (FLAGS_batch_size > 1) {
        std::cout << "batch_size should be 1, when image_file is not None" << std::endl;
        FLAGS_batch_size = 1;
      }
G
Guanghua Yu 已提交
380
    } else {
C
cnn 已提交
381
      GetAllFiles((char *)FLAGS_image_dir.c_str(), all_imgs);
G
Guanghua Yu 已提交
382
    }
C
cnn 已提交
383
    PredictImage(all_imgs, FLAGS_batch_size, FLAGS_threshold, FLAGS_run_benchmark, &det, FLAGS_output_dir);
Q
qingqing01 已提交
384 385 386
  }
  return 0;
}