README.md 20.8 KB
Newer Older
K
Kaipeng Deng 已提交
1
English | [简体中文](README_cn.md)
K
Kaipeng Deng 已提交
2

K
Kaipeng Deng 已提交
3
# PP-YOLO
K
Kaipeng Deng 已提交
4

K
Kaipeng Deng 已提交
5 6 7 8 9 10
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Future Work](#Future_Work)
- [Appendix](#Appendix)
K
Kaipeng Deng 已提交
11

K
Kaipeng Deng 已提交
12
## Introduction
K
Kaipeng Deng 已提交
13

14
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。
K
Kaipeng Deng 已提交
15

K
Kaipeng Deng 已提交
16
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
K
Kaipeng Deng 已提交
17 18 19 20 21

<div align="center">
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
</div>

K
Kaipeng Deng 已提交
22
PP-YOLO improved performance and speed of YOLOv3 with following methods:
K
Kaipeng Deng 已提交
23

K
Kaipeng Deng 已提交
24 25
- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
K
Kaipeng Deng 已提交
33
- Better ImageNet pretrain weights
K
Kaipeng Deng 已提交
34

K
Kaipeng Deng 已提交
35
## Model Zoo
K
Kaipeng Deng 已提交
36

K
Kaipeng Deng 已提交
37
### PP-YOLO
K
Kaipeng Deng 已提交
38

K
Kaipeng Deng 已提交
39 40 41 42 43 44
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :-----: |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     608     |           -          |         43.5          |       62       |          105.5          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     512     |           -          |         43.0          |       83       |          138.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     416     |           -          |         41.2          |       96       |          164.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     320     |           -          |         38.0          |      123       |          199.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov4/yolov4_csdarknet.yml)                   |
45 46 47 48 49 50 51 52
| PP-YOLO                  |     8      |     24     | ResNet50vd |     608     |         44.8         |         45.2          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     512     |         43.9         |         44.4          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     416     |         42.1         |         42.5          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     320     |         38.9         |         39.3          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     608     |         45.3         |         45.9          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     512     |         44.4         |         45.0          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     416     |         42.7         |         43.2          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     320     |         39.5         |         40.1          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_2x.yml)                   |
K
Kaipeng Deng 已提交
53 54 55
| PP-YOLO_ResNet18vd       |     4      |     32     | ResNet18vd |     512     |         29.3         |         29.5          |     357.1      |          657.9          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_r18vd.yml)                  |
| PP-YOLO_ResNet18vd       |     4      |     32     | ResNet18vd |     416     |         28.6         |         28.9          |     409.8      |          719.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_r18vd.yml)                  |
| PP-YOLO_ResNet18vd       |     4      |     32     | ResNet18vd |     320     |         26.2         |         26.4          |     480.7      |          763.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_r18vd.yml)                   |
K
Kaipeng Deng 已提交
56

K
Kaipeng Deng 已提交
57
**Notes:**
K
Kaipeng Deng 已提交
58

59
- PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
60 61 62 63 64 65
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
- YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in [YOLOv4 github repo](https://github.com/AlexeyAB/darknet), Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on [AlexyAB/darknet repo](https://github.com/AlexeyAB/darknet).
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see [PaddleDetection YOLOv4](../yolov4/README.md) for details.
66
- PP-YOLO trained with `batch_size=24` in each GPU with memory as 32G, configuation yaml with `batch_size=12` which can be trained on GPU with memory as 16G is provided as `ppyolo_2x_bs12.yml`, training with `batch_size=12` reached `mAP(IoU=0.5:0.95) = 45.1%` on COCO val2017 dataset, download weights by [ppyolo_2x_bs12 model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x_bs12.pdparams)
K
Kaipeng Deng 已提交
67

68
### PP-YOLO for mobile
K
Kaipeng Deng 已提交
69

70 71 72 73
|            Model             | GPU number | images/GPU | Model Size | input shape | Box AP<sup>val</sup> |  Box AP50<sup>val</sup> | Kirin 990 1xCore(FPS) | download | inference model download | config  |
|:----------------------------:|:----------:|:----------:| :--------: | :----------:| :------------------: |  :--------------------: | :-------------------: | :------: | :----------------------: | :-----: |
| PP-YOLO_MobileNetV3_large    |     4      |      32    |    18MB    |     320     |         23.2         |           42.6          |          15.6         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_mobilenet_v3_large.yml)                   |
| PP-YOLO_MobileNetV3_small    |     4      |      32    |    11MB    |     320     |         17.2         |           33.8          |          28.6         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_mobilenet_v3_small.yml)                   |
K
Kaipeng Deng 已提交
74

K
Kaipeng Deng 已提交
75 76
**Notes:**

77
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
K
Kaipeng Deng 已提交
78 79 80 81 82
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.

### Slim PP-YOLO

83 84 85 86 87 88 89
|            Model             | GPU number | images/GPU | Prune Ratio |        Teacher Model      | Model Size | input shape | Box AP<sup>val</sup> | Kirin 990 1xCore(FPS) | download | inference model download | config  |
|:----------------------------:|:----------:|:----------:| :---------: | :-----------------------: | :--------: | :----------:| :------------------: | :-------------------: | :------: | :----------------------: | :-----: |
| PP-YOLO_MobileNetV3_small    |     4      |      32    |     75%     | PP-YOLO_MobileNetV3_large |   4.2MB    |     320     |         16.2         |      39.8      | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_mobilenet_v3_small.yml)                   |

- Slim PP-YOLO is trained by slim traing method from [Distill pruned model](../../slim/extentions/distill_pruned_model/README.md),distill training pruned PP-YOLO_MobileNetV3_small model with PP-YOLO_MobileNetV3_large model as the teacher model
- Pruning detectiom head of PP-YOLO model with ratio as 75%, while the arguments are `--pruned_params="yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights" --pruned_ratios="0.75,0.75,0.75,0.75"`
- For Slim PP-YOLO training, evaluation, inference and model exporting, please see [Distill pruned model](../../slim/extentions/distill_pruned_model/README.md)
K
Kaipeng Deng 已提交
90

K
Kaipeng Deng 已提交
91 92 93 94 95 96 97 98 99 100
### PP-YOLO on Pascal VOC

PP-YOLO trained on Pascal VOC dataset as follows:

|       Model        | GPU number | images/GPU |  backbone  | input shape | Box AP50<sup>val</sup> | download | config  |
|:------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :------: | :-----: |
| PP-YOLO            |     8      |      12    | ResNet50vd |     608     |          84.9          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_voc.yml)                   |
| PP-YOLO            |     8      |      12    | ResNet50vd |     416     |          84.3          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_voc.yml)                   |
| PP-YOLO            |     8      |      12    | ResNet50vd |     320     |          82.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ppyolo/ppyolo_voc.yml)                   |

K
Kaipeng Deng 已提交
101
## Getting Start
K
Kaipeng Deng 已提交
102

K
Kaipeng Deng 已提交
103
### 1. Training
K
Kaipeng Deng 已提交
104

K
Kaipeng Deng 已提交
105
Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection root directory as default), use `--eval` to enable alternate evaluation during training.
K
Kaipeng Deng 已提交
106 107 108 109 110

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
```

111 112 113
optional: Run `tools/anchor_cluster.py` to get anchors suitable for your dataset, and modify the anchor setting in `configs/ppyolo/ppyolo.yml`.

``` bash
114
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
115 116
```

K
Kaipeng Deng 已提交
117
### 2. Evaluation
K
Kaipeng Deng 已提交
118

K
Kaipeng Deng 已提交
119
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
K
Kaipeng Deng 已提交
120 121

```bash
K
Kaipeng Deng 已提交
122
# use weights released in PaddleDetection model zoo
K
Kaipeng Deng 已提交
123 124
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
125
# use saved checkpoint in training
K
Kaipeng Deng 已提交
126 127 128
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
129
For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command:
130 131

```bash
K
Kaipeng Deng 已提交
132
# use weights released in PaddleDetection model zoo
133 134
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
135
# use saved checkpoint in training
136 137 138
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
139
Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate.
140

K
Kaipeng Deng 已提交
141
**NOTE:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.
142

K
Kaipeng Deng 已提交
143
### 3. Inference
K
Kaipeng Deng 已提交
144

K
Kaipeng Deng 已提交
145
Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.
K
Kaipeng Deng 已提交
146 147

```bash
K
Kaipeng Deng 已提交
148
# inference single image
K
Kaipeng Deng 已提交
149 150
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439_640x640.jpg

K
Kaipeng Deng 已提交
151
# inference all images in the directory
K
Kaipeng Deng 已提交
152 153 154
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_dir=demo
```

K
Kaipeng Deng 已提交
155
### 4. Inferece deployment and benchmark
K
Kaipeng Deng 已提交
156

K
Kaipeng Deng 已提交
157
For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:
K
Kaipeng Deng 已提交
158 159

```bash
K
Kaipeng Deng 已提交
160
# export model, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
161 162
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
163
# inference with Paddle Inference library
K
Kaipeng Deng 已提交
164 165 166
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True
```

K
Kaipeng Deng 已提交
167
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands:
K
Kaipeng Deng 已提交
168 169

```bash
K
Kaipeng Deng 已提交
170
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
171 172
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --exclude_nms

K
Kaipeng Deng 已提交
173
# FP32 benchmark
K
Kaipeng Deng 已提交
174 175
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True

K
Kaipeng Deng 已提交
176
# TensorRT FP16 benchmark
K
Kaipeng Deng 已提交
177 178 179
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```

K
Kaipeng Deng 已提交
180
## Future work
K
Kaipeng Deng 已提交
181

K
Kaipeng Deng 已提交
182 183
1. more PP-YOLO tiny model
2. PP-YOLO model with more backbones
K
Kaipeng Deng 已提交
184

K
Kaipeng Deng 已提交
185
## Appendix
K
Kaipeng Deng 已提交
186

K
Kaipeng Deng 已提交
187
Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
K
Kaipeng Deng 已提交
188

K
Kaipeng Deng 已提交
189 190 191 192 193 194 195 196 197 198 199
| NO.  |        Model                 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |           -           |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |           -           |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |           -           |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |           -           |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |           -           |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |           -           |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |           -           |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |           -           |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |         45.2          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
200 201
|  J   | I + Better ImageNet Pretrain |         44.8         |         45.2          |   44.93   |  45.12   |      72.9     |
|  K   | J + 2x Scheduler             |         45.3         |         45.9          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
202

K
Kaipeng Deng 已提交
203
**Notes:**
K
Kaipeng Deng 已提交
204

K
Kaipeng Deng 已提交
205
- Performance and inference spedd are measure with input shape as 608
K
Kaipeng Deng 已提交
206
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
207 208
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
- [YOLOv3-DarkNet53](../yolov3_darknet.yml) with mAP as 38.9 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](../../docs/MODEL_ZOO.md) for details.