operator.h 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
67 68
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
69

Q
Qiao Longfei 已提交
70
class OperatorBase;
71
class ExecutionContext;
72

Q
Qiao Longfei 已提交
73 74 75 76 77 78 79 80
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
81 82
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
83

Q
Qiao Longfei 已提交
84 85
  virtual ~OperatorBase() {}

86
  /// Executor will call this interface function to Run an op.
87 88
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
89

T
typhoonzero 已提交
90 91 92
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

93 94 95
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
96

97 98
  virtual bool SupportGPU() const { return false; }

99 100
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
101
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
102 103 104 105 106 107 108
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
109

Y
Yu Yang 已提交
110 111
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
112

113
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
114
  //! Get a input with argument's name described in `op_proto`
115
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
116
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
117
  const std::vector<std::string>& Inputs(const std::string& name) const;
118
  //! Get all inputs variable names
Q
qijun 已提交
119 120
  std::vector<std::string> InputVars() const;

121
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
122
  //! Get a output with argument's name described in `op_proto`
123
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
124 125
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
126
  const std::vector<std::string>& Outputs(const std::string& name) const;
127
  //! Get all outputs variable names
Y
Yu Yang 已提交
128
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
129

Q
qiaolongfei 已提交
130
 protected:
Q
Qiao Longfei 已提交
131
  std::string type_;
D
dongzhihong 已提交
132
  // NOTE: in case of OpGrad, inputs_ contains:
133
  // I (Inputs)
D
dongzhihong 已提交
134 135
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
136
  VariableNameMap inputs_;
Y
Yu Yang 已提交
137

D
dongzhihong 已提交
138 139
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
140
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
141
  AttributeMap attrs_;
142 143 144 145

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
146 147
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
148 149
};

150
class ExecutionContext {
Y
Yan Chunwei 已提交
151
 public:
152 153 154
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
155

Q
qiaolongfei 已提交
156 157 158 159
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
160
  template <typename T>
Y
Yu Yang 已提交
161 162
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
163 164
  }

165
  bool HasInput(const std::string& name) const;
166

167
  bool HasOutput(const std::string& name) const;
168

Y
Yu Yang 已提交
169
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
170
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
171 172
  }

Y
Yu Yang 已提交
173
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
174
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
175 176
  }

177
  const Variable* InputVar(const std::string& name) const {
178
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
179
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
180 181
  }

182
  Variable* OutputVar(const std::string& name) const {
183
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
184
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
185 186
  }

187 188
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
189 190
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
191
    res.reserve(names.size());
192 193
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
194 195
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
196
                   });
Y
Yan Chunwei 已提交
197 198 199
    return res;
  }

200
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
201
    auto names = op_.Outputs(name);
202
    std::vector<Variable*> res;
203
    res.reserve(names.size());
204 205
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
206 207
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
208
                   });
Y
Yan Chunwei 已提交
209 210 211
    return res;
  }

212 213
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
214
    auto* var = InputVar(name);
215
    return var == nullptr ? nullptr : &var->Get<T>();
216 217 218 219
  }

  template <typename T>
  T* Output(const std::string& name) const {
220
    auto var = OutputVar(name);
221
    return var == nullptr ? nullptr : var->GetMutable<T>();
222 223 224 225 226 227 228 229
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
230
                   [&](const std::string& sub_name) -> const T* {
231
                     auto var = scope_.FindVar(sub_name);
232
                     return var == nullptr ? nullptr : &var->Get<T>();
233 234 235 236 237
                   });
    return res;
  }

  template <typename T>
238
  std::vector<T*> MultiOutput(const std::string& name) const {
239
    auto names = op_.Outputs(name);
240
    std::vector<T*> res;
241 242
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
243
                   [&](const std::string& sub_name) -> T* {
244
                     auto var = scope_.FindVar(sub_name);
245
                     return var == nullptr ? nullptr : var->GetMutable<T>();
246 247 248 249
                   });
    return res;
  }

250
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
251

Q
QI JUN 已提交
252 253 254 255 256
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

257
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
258
    return device_context_;
Q
qijun 已提交
259
  }
Q
qijun 已提交
260

Q
QI JUN 已提交
261 262 263 264 265 266 267 268
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
269
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
270 271 272
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
273

D
dzhwinter 已提交
274
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
275 276 277 278
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

279
 private:
280 281
  const OperatorBase& op_;
  const Scope& scope_;
282
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
283 284
};

285 286 287 288 289 290 291 292 293 294 295 296 297 298
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
299
class OpKernelBase {
Q
qijun 已提交
300
 public:
Q
qijun 已提交
301
  /**
302
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
303 304
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
305
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
306 307
   */

308
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
309

Y
Yu Yang 已提交
310 311 312 313 314 315 316
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
317 318
};

Y
Yu Yang 已提交
319 320
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
321
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
322
  using OpKernelMap =
Y
yuyang18 已提交
323
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
324

Y
Yu Yang 已提交
325 326
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
327 328
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
329 330 331 332
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
333
  }
Y
Yan Chunwei 已提交
334

335
  bool SupportGPU() const override {
Y
Yu Yang 已提交
336 337 338 339 340
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
341 342
  }

343 344 345
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
346

Q
qiaolongfei 已提交
347
 protected:
348 349 350 351
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
352 353

 private:
354
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
355
  // same.
356
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
357
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
372 373
};

Y
Yu Yang 已提交
374 375
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
376 377
}  // namespace framework
}  // namespace paddle