attention_lstm_op.cc 17.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
26 27 28
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Assert only one Input(X) of AttentionLSTM.");
  PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
29
                 "Assert only one Input(C0) of AttentionLSTM.");
30
  PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
T
tensor-tang 已提交
31
                 "Assert only one Input(LSTMWeight) of AttentionLSTM.");
32
  PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
T
tensor-tang 已提交
33
                 "Assert only one Input(LSTMBias) of AttentionLSTM.");
34
  PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
T
tensor-tang 已提交
35 36
                 "Assert only one Input(AttentionWeight) of AttentionLSTM.");

37
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
38
                 "Assert only one Output(Hidden) of AttentionLSTM.");
39
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
T
tensor-tang 已提交
40
                 "Assert only one Output(Cell) of AttentionLSTM.");
41
  PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
T
tensor-tang 已提交
42
                 "Assert only one Output(AttentionedX) of AttentionLSTM.");
43
  PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
T
tensor-tang 已提交
44
                 "Assert only one Output(AttentionFCOut) of AttentionLSTM.");
45
  PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
T
tensor-tang 已提交
46
                 "Assert only one Output(LSTMX) of AttentionLSTM.");
47
  PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
T
tensor-tang 已提交
48
                 "Assert only one Output(LSTMOUT) of AttentionLSTM.");
T
tensor-tang 已提交
49 50

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
51
  const int M = x_dims[1];
T
tensor-tang 已提交
52 53
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
54 55 56
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
T
update  
tensor-tang 已提交
57 58
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
                    "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D);
T
tensor-tang 已提交
59 60 61

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
62 63
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
T
tensor-tang 已提交
64 65 66

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
T
tensor-tang 已提交
67 68 69 70
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
  }

71
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
72
    auto h_dims = ctx->GetInputDim("H0");
T
update  
tensor-tang 已提交
73 74 75 76 77 78 79
    PADDLE_ENFORCE_EQ(h_dims.size(), 2UL, "Input(H0)'s rank must be 2.");
    if (ctx->IsRuntime() ||
        (framework::product(c_dims) > 0 && framework::product(h_dims) > 0)) {
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }
T
tensor-tang 已提交
80 81
  }

T
tensor-tang 已提交
82 83 84
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
T
update  
tensor-tang 已提交
85 86 87 88
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
T
tensor-tang 已提交
89

90
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
91 92 93
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
94 95 96 97
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
T
tensor-tang 已提交
98 99
  }

100
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
101 102 103
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
T
update  
tensor-tang 已提交
104 105
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
T
tensor-tang 已提交
106 107
  }

108
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
109 110
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
111
        ctx->HasInput("AttentionScalar"),
T
tensor-tang 已提交
112 113 114
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
T
update  
tensor-tang 已提交
115 116
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
T
tensor-tang 已提交
117 118 119
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
120 121
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
122 123 124 125
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
126 127 128 129
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

130
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
131
    const framework::ExecutionContext& ctx) const {
Y
Yu Yang 已提交
132 133
  return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                 ctx.device_context());
T
tensor-tang 已提交
134 135
}

136
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
137 138 139 140 141
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
142 143 144 145 146
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
147
  AddInput("H0",
148 149 150
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
151
      .AsDispensable();
152 153 154 155
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
156 157
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
158 159 160 161 162 163 164 165 166 167
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
168
      .AsDispensable();
169 170 171 172 173 174 175 176 177 178
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
179 180 181 182 183 184
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
185 186 187 188
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
189
      .AsIntermediate();
190 191
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
192
      .AsIntermediate();
193 194 195 196 197 198 199 200 201
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
202 203 204 205 206
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
207
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
208 209
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
210
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
211
      .SetDefault("tanh")
212
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
213 214 215 216 217
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
218
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
219
  AddComment(R"DOC(
220 221 222 223 224 225 226 227 228 229 230 231 232 233
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
234 235 236
)DOC");
}

237 238 239 240
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
241 242
    math::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::avx>(n, y, y);
243
  } else {
T
tensor-tang 已提交
244
    math::vec_relu<T, platform::avx>(n, x, y);
245 246 247
  }
}

T
tensor-tang 已提交
248 249
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
250 251 252 253 254
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
255 256
  math::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                               // exp
257 258 259 260 261
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
262
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
263 264
}

T
tensor-tang 已提交
265
template <typename T>
266
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
267 268
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
269
    using DeviceContext = paddle::platform::CPUDeviceContext;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
287 288 289 290 291

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
292 293 294 295
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
296 297 298 299 300 301 302 303
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
T
tensor-tang 已提交
304
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, "Input(X)'s lod size must be 1.");
T
tensor-tang 已提交
305 306
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
307

308
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
309 310 311
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
312 313
    if (platform::MayIUse(platform::avx)) {
      math::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
314 315 316 317
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
T
tensor-tang 已提交
318
      math::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
319 320 321 322
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
323

T
tensor-tang 已提交
324
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
325
    const T* h0_data = h0 ? h0->data<T>() : NULL;
326 327 328 329 330 331 332 333 334
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
335 336 337 338 339 340
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
341 342 343

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
344
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
345 346
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
347
    const T* cur_atten_x_data = atted_x_data;
348 349 350 351 352
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
353
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
354
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
355
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
356
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
357
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
358 359
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
360
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
361 362 363
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
364
        if (atten_scalar_data) {
T
tensor-tang 已提交
365
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
366 367 368
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
369
        // 1d. softmax
T
tensor-tang 已提交
370
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
371 372 373 374
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
375
        /// 2. compute LSTM step
376 377 378 379 380 381 382 383 384 385 386 387 388
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
389
        act_gate(D3, lstm_out_data, lstm_out_data);
390
        // candicate act: tanh
391
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
392 393 394 395 396

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
397
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
398 399 400 401 402

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
403
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
404
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
405

T
tensor-tang 已提交
406
        prev_hidden_data = cur_hidden_out_data;
407 408 409
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
410
      }
411
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
412
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
413 414 415 416 417 418 419 420
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
421 422
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
423 424
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
425 426
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);