multiclass_nms_op.cc 21.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
Y
Yipeng 已提交
16
#include "paddle/fluid/operators/detection/poly_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
38
    auto score_size = score_dims.size();
39

40
    if (ctx->IsRuntime()) {
J
jerrywgz 已提交
41 42
      PADDLE_ENFORCE(score_size == 2 || score_size == 3,
                     "The rank of Input(Scores) must be 2 or 3");
43
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
J
jerrywgz 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                        "The rank of Input(BBoxes) must be 3");
      if (score_size == 3) {
        PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                           box_dims[2] == 16 || box_dims[2] == 24 ||
                           box_dims[2] == 32,
                       "The last dimension of Input(BBoxes) must be 4 or 8, "
                       "represents the layout of coordinate "
                       "[xmin, ymin, xmax, ymax] or "
                       "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                       "8 points: [xi, yi] i= 1,2,...,8 or "
                       "12 points: [xi, yi] i= 1,2,...,12 or "
                       "16 points: [xi, yi] i= 1,2,...,16");
        PADDLE_ENFORCE_EQ(
            box_dims[1], score_dims[2],
            "The 2nd dimension of Input(BBoxes) must be equal to "
            "last dimension of Input(Scores), which represents the "
            "predicted bboxes.");
      } else {
        PADDLE_ENFORCE(box_dims[2] == 4,
                       "The last dimension of Input(BBoxes) must be 4");
        PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
                          "The 2nd dimension of Input(BBoxes)"
                          "must be equal to the 2nd dimension"
                          " of Input(Scores)");
      }
69
    }
70 71
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
72 73 74 75 76
    if (score_size == 3) {
      ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
77
  }
D
dangqingqing 已提交
78 79 80 81 82

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
83
        ctx.Input<framework::LoDTensor>("Scores")->type(),
84
        platform::CPUPlace());
D
dangqingqing 已提交
85
  }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
107
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
108 109 110 111 112
    sorted_indices->resize(top_k);
  }
}

template <class T>
113
static inline T BBoxArea(const T* box, const bool normalized) {
114
  if (box[2] < box[0] || box[3] < box[1]) {
D
dangqingqing 已提交
115 116 117
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
118 119 120 121 122 123
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
D
dangqingqing 已提交
124
      // If coordinate values are not within range [0, 1].
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
141 142 143
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
144 145 146 147 148 149 150
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

Y
Yipeng 已提交
151 152 153 154 155 156 157
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
J
jerrywgz 已提交
158
    // If coordinate values are invalid
Y
Yipeng 已提交
159 160 161 162 163 164 165
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
                   const framework::Tensor& items, const int class_id,
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  int item_size = 1;
  if (items.dims().size() == 3) {
    item_size = items.dims()[2];
  }
  for (int i = 0; i < num_item; ++i) {
    std::memcpy(item_data + i * item_size,
                items_data + i * class_num * item_size + class_id * item_size,
                sizeof(T) * item_size);
  }
}

185
template <typename T>
D
dangqingqing 已提交
186
class MultiClassNMSKernel : public framework::OpKernel<T> {
187 188 189
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
J
jerrywgz 已提交
190 191
               const int64_t top_k, std::vector<int>* selected_indices,
               const bool normalized) const {
192 193 194
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
195 196
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
197 198 199 200 201 202 203 204 205 206 207 208 209 210
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
211
      for (size_t k = 0; k < selected_indices->size(); ++k) {
212 213
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
214 215 216
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
J
jerrywgz 已提交
217 218 219
            overlap =
                JaccardOverlap<T>(bbox_data + idx * box_size,
                                  bbox_data + kept_idx * box_size, normalized);
Y
Yipeng 已提交
220 221 222 223
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
J
jerrywgz 已提交
224 225 226
            overlap = PolyIoU<T>(bbox_data + idx * box_size,
                                 bbox_data + kept_idx * box_size, box_size,
                                 normalized);
Y
Yipeng 已提交
227
          }
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
243
  void MultiClassNMS(const framework::ExecutionContext& ctx,
244
                     const Tensor& scores, const Tensor& bboxes,
J
jerrywgz 已提交
245
                     const int scores_size,
246 247
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
248 249 250
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
251
    bool normalized = ctx.Attr<bool>("normalized");
252 253
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
254
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
J
jerrywgz 已提交
255
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
256 257

    int num_det = 0;
258 259 260 261 262 263 264 265 266 267 268 269 270

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
271
      }
272 273 274
      NMSFast(bbox_slice, score_slice, score_threshold, nms_threshold, nms_eta,
              nms_top_k, &((*indices)[c]), normalized);
      if (scores_size == 2) {
J
jerrywgz 已提交
275 276
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
277
      num_det += (*indices)[c].size();
278 279
    }

280
    *num_nmsed_out = num_det;
281 282
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
283
      const T* sdata;
284
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
285
      for (const auto& it : *indices) {
286
        int label = it.first;
J
jerrywgz 已提交
287
        if (scores_size == 3) {
288
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
289
        } else {
290 291 292
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
293
        }
294
        const std::vector<int>& label_indices = it.second;
295
        for (size_t j = 0; j < label_indices.size(); ++j) {
296 297 298 299 300 301
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
302 303
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
304 305 306 307
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
308
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
309 310 311 312
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
313 314 315 316 317 318 319
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
320 321
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
322 323 324
    }
  }

J
jerrywgz 已提交
325 326
  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const Tensor& scores, const Tensor& bboxes,
327
                        const std::map<int, std::vector<int>>& selected_indices,
J
jerrywgz 已提交
328 329
                        const int scores_size, Tensor* outs) const {
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
330 331
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
332 333 334 335
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
336 337 338
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
339 340 341
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
342 343 344
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
345
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
346 347 348 349 350
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
351
      for (size_t j = 0; j < indices.size(); ++j) {
352
        int idx = indices[j];
J
jerrywgz 已提交
353 354 355 356 357 358 359 360 361
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
        }
Y
Yipeng 已提交
362 363
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
364
        count++;
365 366 367 368 369
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
370 371
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
372 373 374
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto score_dims = scores->dims();
375
    auto score_size = score_dims.size();
J
jerrywgz 已提交
376
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
377 378 379

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
380 381 382 383
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
384 385 386 387 388 389 390 391 392 393 394 395
    Tensor boxes_slice, scores_slice;
    int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
        auto boxes_lod = boxes->lod().back();
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
396
      }
397 398 399 400 401
      std::map<int, std::vector<int>> indices;
      MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices,
                    &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
402 403 404 405 406 407
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
      T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
      od[0] = -1;
408
      batch_starts = {0, 1};
J
jerrywgz 已提交
409 410
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
411 412 413 414 415 416 417 418 419 420
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
        } else {
          auto boxes_lod = boxes->lod().back();
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
421
        }
422 423 424 425 426 427
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
          MultiClassOutput(dev_ctx, scores_slice, boxes_slice, all_indices[i],
                           score_dims.size(), &out);
428 429 430 431 432 433 434 435 436 437 438
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
439
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
440
 public:
Y
Yu Yang 已提交
441
  void Make() override {
D
dangqingqing 已提交
442
    AddInput("BBoxes",
J
jerrywgz 已提交
443 444
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
445
             "[N, M, 4 or 8 16 24 32] represents the "
446 447
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
448
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
449 450
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
451
    AddInput("Scores",
J
jerrywgz 已提交
452 453
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
454 455 456
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
457 458 459 460
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
461
    AddAttr<int>(
462
        "background_label",
463
        "(int, defalut: 0) "
D
dangqingqing 已提交
464 465
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
466
        .SetDefault(0);
D
dangqingqing 已提交
467 468
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
469 470
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
471 472 473 474 475
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
476 477
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
D
dangqingqing 已提交
478
                   "The threshold to be used in NMS.")
479 480 481
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
482
                   "The parameter for adaptive NMS.")
483
        .SetDefault(1.0);
D
dangqingqing 已提交
484 485 486 487
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
488
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
489
                  "(bool, default true) "
J
jerrywgz 已提交
490 491
                  "Whether detections are normalized.")
        .SetDefault(true);
492 493 494
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
495 496 497 498 499 500
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
501 502 503 504
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
505
This operator is to do multi-class non maximum suppression (NMS) on a batched
506
of boxes and scores.
D
dangqingqing 已提交
507 508 509 510 511 512
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
513
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
514 515
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
516 517 518 519
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
520 521
for all images, all the elements in LoD are set to {0,1}, and the Out only 
contains one value which is -1.
522 523 524 525 526 527 528 529
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dangqingqing 已提交
530 531
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
                  ops::MultiClassNMSOpMaker,
532
                  paddle::framework::EmptyGradOpMaker);
D
dangqingqing 已提交
533 534
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);