ctc_edit_distance_op.cu 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
#include "paddle/framework/op_registry.h"
#include "paddle/platform/cuda_helper.h"
#include "paddle/platform/gpu_info.h"

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;

template <typename T>
__global__ void FillFirstRow(T* dist, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < N + 1) {
    dist[idx] = idx;
  }
}

template <typename T>
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  if (idx < M + 1) {
    dist[idx * (N + 1)] = idx;
  }
}

template <typename T>
__global__ void Levenshtein(T* dist, const T* x1, const T* x2, const int M,
                            const int N, const int start) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  int offset = N;
  int index = start + idx * offset;
  int row = index / (N + 1);
  int col = index % (N + 1);
  if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
    int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
    int dels = dist[(row - 1) * (N + 1) + col] + 1;
    int ins = dist[row * (N + 1) + col - 1] + 1;
    int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
    dist[index] = min(dels, min(ins, subs));
  }
}

template <typename Place, typename T>
class CTCEditDistanceGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_t = ctx.Output<framework::Tensor>("Out");

    auto* x1_t = ctx.Input<framework::Tensor>("X1");
    auto* x2_t = ctx.Input<framework::Tensor>("X2");

    out_t->mutable_data<float>(ctx.GetPlace());

    auto normalized = ctx.Attr<bool>("normalized");
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();

    auto m = x1_t->numel();
    auto n = x2_t->numel();
    T distance = 0;
    if (m == 0) {
      distance = n;
    } else if (n == 0) {
      distance = m;
    } else {
      framework::Tensor dist_t;
      dist_t.Resize({m + 1, n + 1});
      dist_t.mutable_data<T>(ctx.GetPlace());
      auto dist = dist_t.data<T>();
      auto x1 = x1_t->data<T>();
      auto x2 = x2_t->data<T>();

      FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
                           PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);

      FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
                        PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
      // compute the elements of distance matrix in the anti-diagonal diretion
      for (size_t slice = 2; slice < m + n + 1; ++slice) {
        int z_m = slice < m + 1 ? 0 : slice - m;
        int z_n = slice < n + 1 ? 0 : slice - n;
        // number of elments in the same anti-diagonal line
        int size = slice - (z_m + z_n) + 1;
        int start = slice < n + 1 ? slice : z_n * (n + 1) - 1;
        Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
                         PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2, m,
                                                               n, start);
      }

      Place gpu_place = boost::get<Place>(ctx.GetPlace());
      memory::Copy(platform::CPUPlace(), &distance, gpu_place,
                   dist + m * (n + 1) + n, sizeof(T), stream);
    }

    if (normalized) {
      distance = distance / n;
    }
    auto out = out_t->data<float>();
    Place gpu_place = boost::get<Place>(ctx.GetPlace());
    float dist_f = distance;
    memory::Copy(gpu_place, out, platform::CPUPlace(), &dist_f, sizeof(float),
                 stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_GPU_KERNEL(
    ctc_edit_distance,
    ops::CTCEditDistanceGPUKernel<paddle::platform::GPUPlace, int>,
    ops::CTCEditDistanceGPUKernel<paddle::platform::GPUPlace, int64_t>);