api_impl.cc 11.0 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

24
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/api/api_impl.h"
26 27 28
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
29 30 31 32 33 34

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
35
 public:
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

61 62 63 64
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
65
      if (feeds_.size() <= (size_t)idx) {
66 67 68 69 70 71
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
72
      if (fetchs_.size() <= (size_t)idx) {
73 74 75 76 77 78 79
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
80 81
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
82 83
  VLOG(3) << "Predictor::init()";

84 85 86 87 88 89 90 91 92
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }

Y
Yan Chunwei 已提交
93
  if (config_.use_gpu) {
X
Xin Pan 已提交
94 95 96 97
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
98 99 100
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
101
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
102 103 104 105 106
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
107 108 109 110 111 112
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
113 114
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
115 116 117 118 119 120 121 122 123 124
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
125

X
Xin Pan 已提交
126
  ctx_ = executor_->Prepare(*inference_program_, 0);
127 128
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
129

X
Xin Pan 已提交
130
  // Get the feed_target_names and fetch_target_names
131
  PrepareFeedFetch();
X
Xin Pan 已提交
132 133 134
  return true;
}

135
NativePaddlePredictor::~NativePaddlePredictor() {
136 137 138 139
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
140 141 142
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
143
}
144

Y
Yan Chunwei 已提交
145
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
146 147
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
148 149 150 151
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
152
  std::vector<framework::LoDTensor> feeds;
153 154
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
155 156 157 158 159
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
160
  VLOG(4) << "Run prepared context";
161 162 163
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
164
  VLOG(4) << "Finish prepared context";
165 166
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
167
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
168 169 170 171 172 173
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
174
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
175
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
176 177
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

178
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
179
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
180 181
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
182 183 184 185
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
186 187
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
188
#endif
X
Xin Pan 已提交
189 190
}

Y
Yan Chunwei 已提交
191
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
192
                                    framework::Scope *scope) {
X
Xin Pan 已提交
193
  VLOG(3) << "Predictor::set_feed";
194
  if (inputs.size() != feeds_.size()) {
X
Xin Pan 已提交
195 196 197
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
198
  for (size_t i = 0; i < inputs.size(); ++i) {
199 200
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
201 202
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
203
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
204
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
205
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
206 207 208 209 210 211
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
212
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
213
                inputs[i].data.length());
Y
Yan Chunwei 已提交
214 215 216 217 218 219
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
220 221
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
222
      idx = feed_names_[inputs[i].name];
223 224 225 226
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
227 228 229
  }
  return true;
}
L
luotao1 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
      }
    }
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
    }
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
  std::memcpy(buffer.data(), data.data(), buffer.length());
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
286

287 288
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
289
  VLOG(3) << "Predictor::get_fetch";
290 291 292
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
293 294
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
295
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
296 297 298 299 300 301 302 303
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
304
    } else {
L
luotao1 已提交
305
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
306
    }
X
Xin Pan 已提交
307 308 309 310
  }
  return true;
}

311
template <>
312 313
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
314 315 316
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
317
    PADDLE_ENFORCE_GT(
318
        config.fraction_of_gpu_memory, 0.f,
Y
Yan Chunwei 已提交
319
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
320
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
321 322 323 324 325 326 327 328 329 330
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
331 332
  }

Y
Yan Chunwei 已提交
333
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
334
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
335 336
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
337
#ifdef __clang__
J
Jiabin Yang 已提交
338
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
339 340
  return predictor;
#else
341
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
342
#endif
X
Xin Pan 已提交
343 344 345
}

}  // namespace paddle