checkpoint.py 6.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import errno
import os
import time
import re
import numpy as np
import paddle
W
wangxinxin08 已提交
26
import paddle.nn as nn
Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
39 40 41
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
42 43


K
Kaipeng Deng 已提交
44
def get_weights_path_dist(path):
Q
qingqing01 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if trainer_id == 0:
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)

    return path


def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


def load_weight(model, weight, optimizer=None):
    if is_url(weight):
K
Kaipeng Deng 已提交
85
        weight = get_weights_path_dist(weight)
Q
qingqing01 已提交
86 87 88 89 90 91 92 93

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

    param_state_dict = paddle.load(pdparam_path)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    model_dict = model.state_dict()

    model_weight = {}
    incorrect_keys = 0

    for key in model_dict.keys():
        if key in param_state_dict.keys():
            model_weight[key] = param_state_dict[key]
        else:
            logger.info('Unmatched key: {}'.format(key))
            incorrect_keys += 1

    assert incorrect_keys == 0, "Load weight {} incorrectly, \
            {} keys unmatched, please check again.".format(weight,
                                                           incorrect_keys)
    logger.info('Finish loading model weight parameter: {}'.format(
        pdparam_path))

    model.set_dict(model_weight)
Q
qingqing01 已提交
113

G
Guanghua Yu 已提交
114
    last_epoch = 0
Q
qingqing01 已提交
115 116
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
117
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
118 119 120 121 122 123
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
124 125

    return last_epoch
Q
qingqing01 已提交
126 127 128 129 130 131 132 133


def load_pretrain_weight(model,
                         pretrain_weight,
                         load_static_weights=False,
                         weight_type='pretrain'):
    assert weight_type in ['pretrain', 'finetune']
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
134
        pretrain_weight = get_weights_path_dist(pretrain_weight)
Q
qingqing01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))

    model_dict = model.state_dict()

    if load_static_weights:
        pre_state_dict = paddle.static.load_program_state(path)
        param_state_dict = {}
        for key in model_dict.keys():
            weight_name = model_dict[key].name
            if weight_name in pre_state_dict.keys():
                logger.info('Load weight: {}, shape: {}'.format(
                    weight_name, pre_state_dict[weight_name].shape))
                param_state_dict[key] = pre_state_dict[weight_name]
            else:
154 155 156
                if 'backbone' in key:
                    logger.info('Lack weight: {}, structure name: {}'.format(
                        weight_name, key))
Q
qingqing01 已提交
157 158 159 160 161 162 163 164 165
                param_state_dict[key] = model_dict[key]
        model.set_dict(param_state_dict)
        return

    param_state_dict = paddle.load(path + '.pdparams')
    if weight_type == 'pretrain':
        model.backbone.set_dict(param_state_dict)
    else:
        ignore_set = set()
W
wangxinxin08 已提交
166
        for name, weight in model_dict.items():
Q
qingqing01 已提交
167 168 169 170 171 172 173 174 175 176
            if name in param_state_dict:
                if weight.shape != param_state_dict[name].shape:
                    param_state_dict.pop(name, None)
        model.set_dict(param_state_dict)
    return


def save_model(model, optimizer, save_dir, save_name, last_epoch):
    """
    save model into disk.
177

Q
qingqing01 已提交
178 179 180 181 182 183 184 185
    Args:
        model (paddle.nn.Layer): the Layer instalce to save parameters.
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
    """
186 187
    if paddle.distributed.get_rank() != 0:
        return
Q
qingqing01 已提交
188 189 190
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
W
wangxinxin08 已提交
191 192 193 194 195 196
    if isinstance(model, nn.Layer):
        paddle.save(model.state_dict(), save_path + ".pdparams")
    else:
        assert isinstance(model,
                          dict), 'model is not a instance of nn.layer or dict'
        paddle.save(model, save_path + ".pdparams")
Q
qingqing01 已提交
197 198 199 200
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    paddle.save(state_dict, save_path + ".pdopt")
    logger.info("Save checkpoint: {}".format(save_dir))