coco_utils.py 3.1 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

G
Guanghua Yu 已提交
21
from ppdet.py_op.post_process import get_det_res, get_seg_res, get_solov2_segm_res
K
Kaipeng Deng 已提交
22 23 24 25 26

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


W
wangxinxin08 已提交
27
def get_infer_results(outs, catid, bias=0):
K
Kaipeng Deng 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.

    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score. 
    """
    if outs is None or len(outs) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )

    im_id = outs['im_id']

    infer_res = {}
    if 'bbox' in outs:
W
wangxinxin08 已提交
44 45 46 47 48 49 50 51
        infer_res['bbox'] = get_det_res(
            outs['bbox'],
            outs['score'],
            outs['label'],
            outs['bbox_num'],
            im_id,
            catid,
            bias=bias)
K
Kaipeng Deng 已提交
52 53 54

    if 'mask' in outs:
        # mask post process
55 56
        infer_res['mask'] = get_seg_res(outs['mask'], outs['score'],
                                        outs['label'], outs['bbox_num'], im_id,
K
Kaipeng Deng 已提交
57 58
                                        catid)

G
Guanghua Yu 已提交
59 60 61
    if 'segm' in outs:
        infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    return infer_res


def cocoapi_eval(jsonfile,
                 style,
                 coco_gt=None,
                 anno_file=None,
                 max_dets=(100, 300, 1000)):
    """
    Args:
        jsonfile: Evaluation json file, eg: bbox.json, mask.json.
        style: COCOeval style, can be `bbox` , `segm` and `proposal`.
        coco_gt: Whether to load COCOAPI through anno_file,
                 eg: coco_gt = COCO(anno_file)
        anno_file: COCO annotations file.
        max_dets: COCO evaluation maxDets.
    """
    assert coco_gt != None or anno_file != None
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    if coco_gt == None:
        coco_gt = COCO(anno_file)
    logger.info("Start evaluate...")
    coco_dt = coco_gt.loadRes(jsonfile)
    if style == 'proposal':
        coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
        coco_eval.params.useCats = 0
        coco_eval.params.maxDets = list(max_dets)
    else:
        coco_eval = COCOeval(coco_gt, coco_dt, style)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    return coco_eval.stats