flowers.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30 31 32
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
import cPickle
import itertools
33
import functools
34 35 36
from common import download
import tarfile
import scipy.io as scio
37
from paddle.v2.image import *
38
from paddle.v2.reader import *
39 40
import os
import numpy as np
41
from multiprocessing import cpu_count
42 43 44 45 46 47 48 49
__all__ = ['train', 'test', 'valid']

DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
50 51 52 53 54 55
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
56 57


58
def default_mapper(is_train, sample):
59 60 61 62
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
63
    img = load_image_bytes(img)
D
dangqingqing 已提交
64 65
    img = simple_transform(
        img, 256, 224, is_train, mean=[103.94, 116.78, 123, 68])
66 67 68
    return img.flatten().astype('float32'), label


69 70 71 72
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


73 74 75
def reader_creator(data_file,
                   label_file,
                   setid_file,
76
                   dataset_name,
77
                   mapper,
78
                   buffered_size=1024,
W
wanghaoshuang 已提交
79
                   use_xmap=True):
80
    '''
81
    1. read images from tar file and
82 83
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
84 85

    :param data_file: downloaded data file
86
    :type data_file: string
87
    :param label_file: downloaded label file
88 89 90 91
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
92 93
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
94
    :param mapper: a function to map image bytes data to type
95 96
                    needed by model input layer
    :type mapper: callable
97 98
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
99 100 101
    :return: data reader
    :rtype: callable
    '''
102 103 104 105 106 107 108
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
109 110 111 112 113 114 115 116 117 118 119 120

    def reader():
        for file in open(file_list):
            file = file.strip()
            batch = None
            with open(file, 'r') as f:
                batch = cPickle.load(f)
            data = batch['data']
            labels = batch['label']
            for sample, label in itertools.izip(data, batch['label']):
                yield sample, int(label)

W
wanghaoshuang 已提交
121
    if use_xmap:
122 123 124
        return xmap_readers(mapper, reader, cpu_count(), buffered_size)
    else:
        return map_readers(mapper, reader)
125 126


127
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True):
128
    '''
129 130 131
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
132 133 134 135 136 137
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
138 139
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
140 141 142 143 144 145
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
146 147
        download(SETID_URL, 'flowers', SETID_MD5), TRAIN_FLAG, mapper,
        buffered_size, use_xmap)
148 149


150
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True):
151
    '''
152 153 154
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
155 156 157 158 159 160
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
161 162
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
163 164 165 166 167 168
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
169 170
        download(SETID_URL, 'flowers', SETID_MD5), TEST_FLAG, mapper,
        buffered_size, use_xmap)
171 172


173
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
174
    '''
175 176 177
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
178 179 180 181
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
182 183 184 185 186 187
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
188 189 190 191
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
192 193
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
194 195 196 197 198 199


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)