networks.py 50.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

"""
# from activations import *
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
    IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
Y
Yu Yang 已提交
22
    wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
Z
zhangjinchao01 已提交
23 24 25 26
from layers import *  # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *

Q
qijun 已提交
27 28
__all__ = [
    'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
29 30 31 32
    "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
    'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
    'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool',
    'bidirectional_lstm', 'inputs', 'outputs'
Q
qijun 已提交
33
]
Z
zhangjinchao01 已提交
34 35 36 37 38

######################################################
#                     Text CNN                       #
######################################################

Q
qijun 已提交
39

Z
zhangjinchao01 已提交
40 41
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
Q
qijun 已提交
42 43
                       context_len,
                       hidden_size,
Z
zhangjinchao01 已提交
44 45
                       name=None,
                       context_start=None,
Q
qijun 已提交
46 47
                       pool_type=None,
                       context_proj_layer_name=None,
Z
zhangjinchao01 已提交
48 49 50
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
Q
qijun 已提交
51 52
                       fc_bias_attr=None,
                       fc_act=None,
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
    Text convolution pooling layers helper.

    Text input => Context Projection => FC Layer => Pooling => Output.

    :param name: name of output layer(pooling layer name)
    :type name: basestring
    :param input: name of input layer
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
    :param context_start: context projection length. See
                          context_projection's context_start.
    :type context_start: int or None
    :param pool_type: pooling layer type. See pooling_layer's document.
    :type pool_type: BasePoolingType.
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
    :param context_proj_param_attr: context projection parameter attribute.
                                    None if user don't care.
    :type context_proj_param_attr: ParameterAttribute or None.
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
    :type fc_param_attr: ParameterAttribute or None
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
    :type fc_bias_attr: ParameterAttribute or None
    :param fc_act: fc layer activation type. None means tanh
    :type fc_act: BaseActivation
    :param pool_bias_attr: pooling layer bias attr. None if don't care.
                           False if no bias.
    :type pool_bias_attr: ParameterAttribute or None.
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
    :return: output layer name.
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

Q
qijun 已提交
107 108 109 110 111 112 113 114 115 116
    with mixed_layer(
            name=context_proj_layer_name,
            size=input.size * context_len,
            act=LinearActivation(),
            layer_attr=context_attr) as m:
        m += context_projection(
            input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)
Z
zhangjinchao01 已提交
117 118 119

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
Q
qijun 已提交
120 121 122 123 124 125 126 127
    fl = fc_layer(
        name=fc_layer_name,
        input=m,
        size=hidden_size,
        act=fc_act,
        layer_attr=fc_attr,
        param_attr=fc_param_attr,
        bias_attr=fc_bias_attr)
Z
zhangjinchao01 已提交
128

Q
qijun 已提交
129 130 131 132 133 134
    return pooling_layer(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)
Z
zhangjinchao01 已提交
135 136 137 138 139 140 141 142


text_conv_pool = sequence_conv_pool

############################################################################
#                       Images                                             #
############################################################################

Q
qijun 已提交
143

Z
zhangjinchao01 已提交
144
@wrap_name_default("conv_pool")
Q
qijun 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         name=None,
                         pool_type=None,
                         act=None,
                         groups=1,
                         conv_stride=1,
                         conv_padding=0,
                         bias_attr=None,
                         num_channel=None,
                         param_attr=None,
                         shared_bias=True,
                         conv_layer_attr=None,
                         pool_stride=1,
                         pool_padding=0,
                         pool_layer_attr=None):
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    """
    Simple image convolution and pooling group.

    Input => conv => pooling

    :param name: group name
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param filter_size: see img_conv_layer for details
    :type filter_size: int
    :param num_filters: see img_conv_layer for details
    :type num_filters: int
    :param pool_size: see img_pool_layer for details
    :type pool_size: int
    :param pool_type: see img_pool_layer for details
    :type pool_type: BasePoolingType
    :param act: see img_conv_layer for details
    :type act: BaseActivation
    :param groups: see img_conv_layer for details
    :type groups: int
    :param conv_stride: see img_conv_layer for details
    :type conv_stride: int
    :param conv_padding: see img_conv_layer for details
    :type conv_padding: int
    :param bias_attr: see img_conv_layer for details
    :type bias_attr: ParameterAttribute
    :param num_channel: see img_conv_layer for details
    :type num_channel: int
    :param param_attr: see img_conv_layer for details
    :type param_attr: ParameterAttribute
    :param shared_bias: see img_conv_layer for details
    :type shared_bias: bool
    :param conv_layer_attr: see img_conv_layer for details
    :type conv_layer_attr: ExtraLayerAttribute
198
    :param pool_stride: see img_pool_layer for details
Z
zhangjinchao01 已提交
199
    :type pool_stride: int
200
    :param pool_padding: see img_pool_layer for details
Z
zhangjinchao01 已提交
201
    :type pool_padding: int
202
    :param pool_layer_attr: see img_pool_layer for details
Z
zhangjinchao01 已提交
203 204 205 206
    :type pool_layer_attr: ExtraLayerAttribute
    :return: Layer's output
    :rtype: LayerOutput
    """
Q
qijun 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    _conv_ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=act,
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=_conv_,
        pool_size=pool_size,
        pool_type=pool_type,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)
Z
zhangjinchao01 已提交
229 230 231


@wrap_name_default("conv_bn_pool")
Q
qijun 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def img_conv_bn_pool(input,
                     filter_size,
                     num_filters,
                     pool_size,
                     name=None,
                     pool_type=None,
                     act=None,
                     groups=1,
                     conv_stride=1,
                     conv_padding=0,
                     conv_bias_attr=None,
                     num_channel=None,
                     conv_param_attr=None,
                     shared_bias=True,
                     conv_layer_attr=None,
                     bn_param_attr=None,
                     bn_bias_attr=None,
                     bn_layer_attr=None,
                     pool_stride=1,
                     pool_padding=0,
                     pool_layer_attr=None):
Z
zhangjinchao01 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    """
    Convolution, batch normalization, pooling group.

    :param name: group name
    :type name: basestring
    :param input: layer's input
    :type input: LayerOutput
    :param filter_size: see img_conv_layer's document
    :type filter_size: int
    :param num_filters: see img_conv_layer's document
    :type num_filters: int
    :param pool_size: see img_pool_layer's document.
    :type pool_size: int
    :param pool_type: see img_pool_layer's document.
    :type pool_type: BasePoolingType
    :param act: see batch_norm_layer's document.
    :type act: BaseActivation
    :param groups: see img_conv_layer's document
    :type groups: int
    :param conv_stride: see img_conv_layer's document.
    :type conv_stride: int
    :param conv_padding: see img_conv_layer's document.
    :type conv_padding: int
    :param conv_bias_attr: see img_conv_layer's document.
    :type conv_bias_attr: ParameterAttribute
    :param num_channel: see img_conv_layer's document.
    :type num_channel: int
    :param conv_param_attr: see img_conv_layer's document.
    :type conv_param_attr: ParameterAttribute
    :param shared_bias: see img_conv_layer's document.
    :type shared_bias: bool
    :param conv_layer_attr: see img_conv_layer's document.
    :type conv_layer_attr: ExtraLayerOutput
    :param bn_param_attr: see batch_norm_layer's document.
    :type bn_param_attr: ParameterAttribute.
    :param bn_bias_attr: see batch_norm_layer's document.
    :param bn_layer_attr: ParameterAttribute.
    :param pool_stride: see img_pool_layer's document.
    :type pool_stride: int
    :param pool_padding: see img_pool_layer's document.
    :type pool_padding: int
    :param pool_layer_attr: see img_pool_layer's document.
    :type pool_layer_attr: ExtraLayerAttribute
    :return: Layer groups output
    :rtype: LayerOutput
    """
Q
qijun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    __conv__ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=LinearActivation(),
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=conv_bias_attr,
        param_attr=conv_param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    __bn__ = batch_norm_layer(
        name="%s_bn" % name,
        input=__conv__,
        act=act,
        bias_attr=bn_bias_attr,
        param_attr=bn_param_attr,
        layer_attr=bn_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=__bn__,
        pool_type=pool_type,
        pool_size=pool_size,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)


@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
    param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
                   conv_num_filter,
Z
zhangjinchao01 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
                   pool_size,
                   num_channels=None,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=0,
                   pool_stride=1,
                   pool_type=None):
    """
    Image Convolution Group, Used for vgg net.

    TODO(yuyang18): Complete docs

    :param conv_batchnorm_drop_rate:
    :param input:
    :param conv_num_filter:
    :param pool_size:
    :param num_channels:
    :param conv_padding:
    :param conv_filter_size:
    :param conv_act:
    :param conv_with_batchnorm:
    :param pool_stride:
    :param pool_type:
    :return:
    """
    tmp = input

    # Type checks
    assert isinstance(tmp, LayerOutput)
    assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter,
                                                           tuple)
    for each_num_filter in conv_num_filter:
        assert isinstance(each_num_filter, int)

    assert isinstance(pool_size, int)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_act = __extend_list__(conv_act)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        extra_kwargs = dict()
        if num_channels is not None:
            extra_kwargs['num_channels'] = num_channels
            num_channels = None
        if conv_with_batchnorm[i]:
            extra_kwargs['act'] = LinearActivation()
        else:
            extra_kwargs['act'] = conv_act[i]

Q
qijun 已提交
395 396 397 398 399 400
        tmp = img_conv_layer(
            input=tmp,
            padding=conv_padding[i],
            filter_size=conv_filter_size[i],
            num_filters=conv_num_filter[i],
            **extra_kwargs)
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408

        # logger.debug("tmp.num_filters = %d" % tmp.num_filters)

        if conv_with_batchnorm[i]:
            dropout = conv_batchnorm_drop_rate[i]
            if dropout == 0 or abs(dropout) < 1e-5:  # dropout not set
                tmp = batch_norm_layer(input=tmp, act=conv_act[i])
            else:
Q
qijun 已提交
409 410 411 412
                tmp = batch_norm_layer(
                    input=tmp,
                    act=conv_act[i],
                    layer_attr=ExtraAttr(drop_rate=dropout))
Z
zhangjinchao01 已提交
413

Q
qijun 已提交
414 415
    return img_pool_layer(
        input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
Z
zhangjinchao01 已提交
416 417 418 419


def small_vgg(input_image, num_channels, num_classes):
    def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
Q
qijun 已提交
420 421 422 423 424 425 426 427 428 429 430
        return img_conv_group(
            input=ipt,
            num_channels=num_channels_,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * times,
            conv_filter_size=3,
            conv_act=ReluActivation(),
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type=MaxPooling())
Z
zhangjinchao01 已提交
431 432 433 434 435

    tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
    tmp = __vgg__(tmp, 128, 2, [0.4, 0])
    tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
    tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
Q
qijun 已提交
436 437
    tmp = img_pool_layer(
        input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
Z
zhangjinchao01 已提交
438
    tmp = dropout_layer(input=tmp, dropout_rate=0.5)
Q
qijun 已提交
439 440 441 442 443
    tmp = fc_layer(
        input=tmp,
        size=512,
        layer_attr=ExtraAttr(drop_rate=0.5),
        act=LinearActivation())
Z
zhangjinchao01 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    tmp = batch_norm_layer(input=tmp, act=ReluActivation())
    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


def vgg_16_network(input_image, num_channels, num_classes=1000):
    """
    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

    :param num_classes:
    :param input_image:
    :type input_image: LayerOutput
    :param num_channels:
    :type num_channels: int
    :return:
    """

Q
qijun 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    tmp = img_conv_group(
        input=input_image,
        num_channels=num_channels,
        conv_padding=1,
        conv_num_filter=[64, 64],
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_size=2,
        pool_stride=2,
        pool_type=MaxPooling())

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[128, 128],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[256, 256, 256],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)
    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))
Z
zhangjinchao01 已提交
521 522 523 524 525 526 527 528

    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


############################################################################
#                       Recurrent                                          #
############################################################################

Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530
@wrap_name_default("lstm")
Q
qijun 已提交
531 532 533 534 535 536 537 538 539 540 541
def simple_lstm(input,
                size,
                name=None,
                reverse=False,
                mat_param_attr=None,
                bias_param_attr=None,
                inner_param_attr=None,
                act=None,
                gate_act=None,
                state_act=None,
                mixed_layer_attr=None,
Z
zhangjinchao01 已提交
542 543 544 545
                lstm_cell_attr=None):
    """
    Simple LSTM Cell.

L
luotao02 已提交
546
    It just combine a mixed layer with fully_matrix_projection and a lstmemory
Z
zhangjinchao01 已提交
547 548 549 550
    layer. The simple lstm cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
551
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
552

L
luotao02 已提交
553
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
554

L
luotao02 已提交
555
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
556

L
luotao02 已提交
557
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
558

L
luotao02 已提交
559
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
560 561 562 563 564 565 566 567 568 569 570 571

    Please refer **Generating Sequences With Recurrent Neural Networks** if you
    want to know what lstm is. Link_ is here.

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: lstm layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
C
caoying03 已提交
572
    :param reverse: whether to process the input data in a reverse order
Z
zhangjinchao01 已提交
573 574 575 576 577 578 579 580
    :type reverse: bool
    :param mat_param_attr: mixed layer's matrix projection parameter attribute.
    :type mat_param_attr: ParameterAttribute
    :param bias_param_attr: bias parameter attribute. False means no bias, None
                            means default bias.
    :type bias_param_attr: ParameterAttribute|False
    :param inner_param_attr: lstm cell parameter attribute.
    :type inner_param_attr: ParameterAttribute
C
caoying03 已提交
581
    :param act: lstm final activiation type
Z
zhangjinchao01 已提交
582
    :type act: BaseActivation
C
caoying03 已提交
583
    :param gate_act: lstm gate activiation type
Z
zhangjinchao01 已提交
584
    :type gate_act: BaseActivation
C
caoying03 已提交
585
    :param state_act: lstm state activiation type.
Z
zhangjinchao01 已提交
586 587 588 589 590 591 592 593 594
    :type state_act: BaseActivation
    :param mixed_layer_attr: mixed layer's extra attribute.
    :type mixed_layer_attr: ExtraLayerAttribute
    :param lstm_cell_attr: lstm layer's extra attribute.
    :type lstm_cell_attr: ExtraLayerAttribute
    :return: lstm layer name.
    :rtype: LayerOutput
    """
    fc_name = 'lstm_transform_%s' % name
Q
qijun 已提交
595 596 597 598 599 600
    with mixed_layer(
            name=fc_name,
            size=size * 4,
            act=IdentityActivation(),
            layer_attr=mixed_layer_attr,
            bias_attr=False) as m:
Z
zhangjinchao01 已提交
601 602
        m += full_matrix_projection(input, param_attr=mat_param_attr)

Q
qijun 已提交
603 604 605 606 607 608 609 610 611 612
    return lstmemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=bias_param_attr,
        param_attr=inner_param_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
        layer_attr=lstm_cell_attr)
Z
zhangjinchao01 已提交
613 614 615


@wrap_name_default('lstm_unit')
Q
qijun 已提交
616 617 618 619 620 621 622 623 624 625 626
def lstmemory_unit(input,
                   name=None,
                   size=None,
                   param_attr=None,
                   act=None,
                   gate_act=None,
                   state_act=None,
                   mixed_bias_attr=None,
                   lstm_bias_attr=None,
                   mixed_layer_attr=None,
                   lstm_layer_attr=None,
Z
zhangjinchao01 已提交
627 628
                   get_output_layer_attr=None):
    """
C
caoying03 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    Define calculations that a LSTM unit performs in a single time step.
    This function itself is not a recurrent layer, so that it can not be
    directly applied to sequence input. This function is always used in
    recurrent_group (see layers.py for more details) to implement attention
    mechanism.

    Please refer to  **Generating Sequences With Recurrent Neural Networks**
    for more details about LSTM. The link goes as follows:
    .. _Link: https://arxiv.org/abs/1308.0850

    ..  math::

        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)

        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)

        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)

        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)

        h_t & = o_t tanh(c_t)

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_unit(input=[layer1],
                                   size=256,
                                   act=TanhActivation(),
                                   gate_act=SigmoidActivation(),
                                   state_act=TanhActivation())

Z
zhangjinchao01 已提交
661

L
luotao02 已提交
662 663 664 665 666 667 668 669
    :param input: input layer name.
    :type input: LayerOutput
    :param name: lstmemory unit name.
    :type name: basestring
    :param size: lstmemory unit size.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
C
caoying03 已提交
670
    :param act: lstm final activiation type
L
luotao02 已提交
671
    :type act: BaseActivation
C
caoying03 已提交
672
    :param gate_act: lstm gate activiation type
L
luotao02 已提交
673
    :type gate_act: BaseActivation
C
caoying03 已提交
674
    :param state_act: lstm state activiation type.
L
luotao02 已提交
675
    :type state_act: BaseActivation
676
    :param mixed_bias_attr: bias parameter attribute of mixed layer.
L
luotao02 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689
                            False means no bias, None means default bias.
    :type mixed_bias_attr: ParameterAttribute|False
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
                           False means no bias, None means default bias.
    :type lstm_bias_attr: ParameterAttribute|False
    :param mixed_layer_attr: mixed layer's extra attribute.
    :type mixed_layer_attr: ExtraLayerAttribute
    :param lstm_layer_attr: lstm layer's extra attribute.
    :type lstm_layer_attr: ExtraLayerAttribute
    :param get_output_layer_attr: get output layer's extra attribute.
    :type get_output_layer_attr: ExtraLayerAttribute
    :return: lstmemory unit name.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
690 691 692 693 694 695 696
    """
    if size is None:
        assert input.size % 4 == 0
        size = input.size / 4
    out_mem = memory(name=name, size=size)
    state_mem = memory(name="%s_state" % name, size=size)

Q
qijun 已提交
697 698 699 700 701 702
    with mixed_layer(
            name="%s_input_recurrent" % name,
            size=size * 4,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr,
            act=IdentityActivation()) as m:
Z
zhangjinchao01 已提交
703 704 705 706 707 708 709 710 711 712 713 714
        m += identity_projection(input=input)
        m += full_matrix_projection(input=out_mem, param_attr=param_attr)

    lstm_out = lstm_step_layer(
        name=name,
        input=m,
        state=state_mem,
        size=size,
        bias_attr=lstm_bias_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
Q
qijun 已提交
715 716 717 718 719 720
        layer_attr=lstm_layer_attr)
    get_output_layer(
        name='%s_state' % name,
        input=lstm_out,
        arg_name='state',
        layer_attr=get_output_layer_attr)
Z
zhangjinchao01 已提交
721 722 723 724 725

    return lstm_out


@wrap_name_default('lstm_group')
Q
qijun 已提交
726 727 728 729 730 731 732 733 734 735 736 737
def lstmemory_group(input,
                    size=None,
                    name=None,
                    reverse=False,
                    param_attr=None,
                    act=None,
                    gate_act=None,
                    state_act=None,
                    mixed_bias_attr=None,
                    lstm_bias_attr=None,
                    mixed_layer_attr=None,
                    lstm_layer_attr=None,
Z
zhangjinchao01 已提交
738 739
                    get_output_layer_attr=None):
    """
740
    lstm_group is a recurrent layer group version of Long Short Term Memory. It
C
caoying03 已提交
741 742
    does exactly the same calculation as the lstmemory layer (see lstmemory in
    layers.py for the maths) does. A promising benefit is that LSTM memory
743
    cell states, or hidden states in every time step are accessible to the
C
caoying03 已提交
744
    user. This is especially useful in attention model. If you do not need to
745
    access the internal states of the lstm, but merely use its outputs,
746
    it is recommended to use the lstmemory, which is relatively faster than
C
caoying03 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    lstmemory_group.

    NOTE: In PaddlePaddle's implementation, the following input-to-hidden
    multiplications:
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in lstmemory_unit to
    speed up the calculations. Consequently, an additional mixed_layer with
    full_matrix_projection must be included before lstmemory_unit is called.

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_group(input=[layer1],
                                    size=256,
                                    act=TanhActivation(),
                                    gate_act=SigmoidActivation(),
                                    state_act=TanhActivation())
Z
zhangjinchao01 已提交
765

L
luotao02 已提交
766 767 768 769 770 771 772 773 774 775
    :param input: input layer name.
    :type input: LayerOutput
    :param name: lstmemory group name.
    :type name: basestring
    :param size: lstmemory group size.
    :type size: int
    :param reverse: is lstm reversed
    :type reverse: bool
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
C
caoying03 已提交
776
    :param act: lstm final activiation type
L
luotao02 已提交
777
    :type act: BaseActivation
C
caoying03 已提交
778
    :param gate_act: lstm gate activiation type
L
luotao02 已提交
779
    :type gate_act: BaseActivation
C
caoying03 已提交
780
    :param state_act: lstm state activiation type.
L
luotao02 已提交
781
    :type state_act: BaseActivation
C
caoying03 已提交
782
    :param mixed_bias_attr: bias parameter attribute of mixed layer.
L
luotao02 已提交
783 784 785 786 787 788 789 790 791 792 793
                            False means no bias, None means default bias.
    :type mixed_bias_attr: ParameterAttribute|False
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
                           False means no bias, None means default bias.
    :type lstm_bias_attr: ParameterAttribute|False
    :param mixed_layer_attr: mixed layer's extra attribute.
    :type mixed_layer_attr: ExtraLayerAttribute
    :param lstm_layer_attr: lstm layer's extra attribute.
    :type lstm_layer_attr: ExtraLayerAttribute
    :param get_output_layer_attr: get output layer's extra attribute.
    :type get_output_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
794
    :return: the lstmemory group.
L
luotao02 已提交
795
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
796 797 798
    """

    def __lstm_step__(ipt):
Q
qijun 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        return lstmemory_unit(
            input=ipt,
            name=name,
            size=size,
            mixed_bias_attr=mixed_bias_attr,
            mixed_layer_attr=mixed_layer_attr,
            param_attr=param_attr,
            lstm_bias_attr=lstm_bias_attr,
            act=act,
            gate_act=gate_act,
            state_act=state_act,
            lstm_layer_attr=lstm_layer_attr,
            get_output_layer_attr=get_output_layer_attr)

    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__lstm_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824


@wrap_name_default('gru_unit')
def gru_unit(input,
             size=None,
             name=None,
             gru_bias_attr=None,
W
wangyang59 已提交
825
             gru_param_attr=None,
Z
zhangjinchao01 已提交
826 827
             act=None,
             gate_act=None,
Y
Yu Yang 已提交
828 829
             gru_layer_attr=None,
             naive=False):
Z
zhangjinchao01 已提交
830
    """
C
caoying03 已提交
831 832 833 834 835
    Define calculations that a gated recurrent unit performs in a single time
    step. This function itself is not a recurrent layer, so that it can not be
    directly applied to sequence input. This function is almost always used in
    the recurrent_group (see layers.py for more details) to implement attention
    mechanism.
Z
zhangjinchao01 已提交
836

C
caoying03 已提交
837 838 839
    Please see grumemory in layers.py for the details about the maths.

    :param input: input layer name.
Z
zhangjinchao01 已提交
840
    :type input: LayerOutput
C
caoying03 已提交
841 842 843 844 845 846 847 848 849 850 851 852
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param act: type of the activation
    :type act: BaseActivation
    :param gate_act: type of the gate activation
    :type gate_act: BaseActivation
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru output layer.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
853 854 855 856 857 858 859 860
    """

    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3

    out_mem = memory(name=name, size=size)

Y
Yu Yang 已提交
861 862 863 864 865 866
    if naive:
        __step__ = gru_step_naive_layer
    else:
        __step__ = gru_step_layer

    gru_out = __step__(
Z
zhangjinchao01 已提交
867 868 869 870 871
        name=name,
        input=input,
        output_mem=out_mem,
        size=size,
        bias_attr=gru_bias_attr,
W
wangyang59 已提交
872
        param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
873 874
        act=act,
        gate_act=gate_act,
Q
qijun 已提交
875
        layer_attr=gru_layer_attr)
Z
zhangjinchao01 已提交
876 877 878 879 880 881 882 883 884
    return gru_out


@wrap_name_default('gru_group')
def gru_group(input,
              size=None,
              name=None,
              reverse=False,
              gru_bias_attr=None,
W
wangyang59 已提交
885
              gru_param_attr=None,
Q
qijun 已提交
886 887
              act=None,
              gate_act=None,
Y
Yu Yang 已提交
888 889
              gru_layer_attr=None,
              naive=False):
C
caoying03 已提交
890
    """
891
    gru_group is a recurrent layer group version of Gated Recurrent Unit. It
C
caoying03 已提交
892
    does exactly the same calculation as the grumemory layer does. A promising
893 894 895
    benefit is that gru hidden states are accessible to the user. This is
    especially useful in attention model. If you do not need to access
    any internal state, but merely use the outputs of a GRU, it is recommended
C
caoying03 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    to use the grumemory, which is relatively faster.

    Please see grumemory in layers.py for more detail about the maths.

    The example usage is:

    ..  code-block:: python

        gru = gur_group(input=[layer1],
                        size=256,
                        act=TanhActivation(),
                        gate_act=SigmoidActivation())

    :param input: input layer name.
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """

Z
zhangjinchao01 已提交
929 930 931 932 933 934
    def __gru_step__(ipt):
        return gru_unit(
            input=ipt,
            name=name,
            size=size,
            gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
935
            gru_param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
936 937
            act=act,
            gate_act=gate_act,
Y
Yu Yang 已提交
938 939
            gru_layer_attr=gru_layer_attr,
            naive=naive)
Z
zhangjinchao01 已提交
940

Q
qijun 已提交
941 942 943 944 945
    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__gru_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
946 947 948 949 950 951 952 953 954 955 956


@wrap_name_default('simple_gru')
def simple_gru(input,
               size,
               name=None,
               reverse=False,
               mixed_param_attr=None,
               mixed_bias_param_attr=None,
               mixed_layer_attr=None,
               gru_bias_attr=None,
W
wangyang59 已提交
957
               gru_param_attr=None,
Z
zhangjinchao01 已提交
958 959
               act=None,
               gate_act=None,
Y
Yu Yang 已提交
960 961
               gru_layer_attr=None,
               naive=False):
C
caoying03 已提交
962
    """
963 964 965 966 967 968
    You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
    simple_gru in network.py. The reason why there are so many interfaces is
    that we have two ways to implement recurrent neural network. One way is to
    use one complete layer to implement rnn (including simple rnn, gru and lstm)
    with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But,
    the multiplication operation :math:`W x_t` is not computed in these layers.
969
    See details in their interfaces in layers.py.
970 971 972 973 974 975
    The other implementation is to use an recurrent group which can ensemble a
    series of layers to compute rnn step by step. This way is flexible for
    attenion mechanism or other complex connections.

    - gru_step_layer: only compute rnn by one step. It needs an memory as input
      and can be used in recurrent group.
976
    - gru_unit: a wrapper of gru_step_layer with memory.
977 978
    - gru_group: a GRU cell implemented by a combination of multiple layers in
      recurrent group.
979
      But :math:`W x_t` is not done in group.
980
    - gru_memory: a GRU cell implemented by one layer, which does same calculation
981 982
      with gru_group and is faster than gru_group.
    - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and
983
      gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see
984
      formula in grumemory.
985

C
caoying03 已提交
986 987 988 989 990 991 992
    The computational speed is that, grumemory is relatively better than
    gru_group, and gru_group is relatively better than simple_gru.

    The example usage is:

    ..  code-block:: python

993
        gru = simple_gru(input=[layer1], size=256)
C
caoying03 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

    :param input: input layer name.
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1014 1015 1016 1017 1018
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_param_attr,
            layer_attr=mixed_layer_attr) as m:
Z
zhangjinchao01 已提交
1019 1020
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1021 1022 1023 1024 1025 1026
    return gru_group(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1027
        gru_param_attr=gru_param_attr,
Q
qijun 已提交
1028 1029
        act=act,
        gate_act=gate_act,
Y
Yu Yang 已提交
1030 1031
        gru_layer_attr=gru_layer_attr,
        naive=naive)
Z
zhangjinchao01 已提交
1032 1033


1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
@wrap_name_default('simple_gru2')
def simple_gru2(input,
                size,
                name=None,
                reverse=False,
                mixed_param_attr=None,
                mixed_bias_attr=None,
                gru_param_attr=None,
                gru_bias_attr=None,
                act=None,
                gate_act=None,
                mixed_layer_attr=None,
Q
qijun 已提交
1046
                gru_cell_attr=None):
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    """
    simple_gru2 is the same with simple_gru, but using grumemory instead
    Please see grumemory in layers.py for more detail about the maths.
    simple_gru2 is faster than simple_gru.

    The example usage is:

    ..  code-block:: python

        gru = simple_gru2(input=[layer1], size=256)

    :param input: input layer name.
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1077 1078 1079 1080 1081
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr) as m:
1082 1083
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    return grumemory(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        bias_attr=gru_bias_attr,
        param_attr=gru_param_attr,
        act=act,
        gate_act=gate_act,
        layer_attr=gru_cell_attr)
1094 1095 1096


@wrap_name_default("bidirectional_gru")
Q
qijun 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
def bidirectional_gru(input,
                      size,
                      name=None,
                      return_seq=False,
                      fwd_mixed_param_attr=None,
                      fwd_mixed_bias_attr=None,
                      fwd_gru_param_attr=None,
                      fwd_gru_bias_attr=None,
                      fwd_act=None,
                      fwd_gate_act=None,
                      fwd_mixed_layer_attr=None,
                      fwd_gru_cell_attr=None,
                      bwd_mixed_param_attr=None,
                      bwd_mixed_bias_attr=None,
                      bwd_gru_param_attr=None,
                      bwd_gru_bias_attr=None,
                      bwd_act=None,
                      bwd_gate_act=None,
                      bwd_mixed_layer_attr=None,
                      bwd_gru_cell_attr=None,
                      last_seq_attr=None,
                      first_seq_attr=None,
                      concat_attr=None,
                      concat_act=None):
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    """
    A bidirectional_gru is a recurrent unit that iterates over the input
    sequence both in forward and bardward orders, and then concatenate two
    outputs to form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    The example usage is:

    ..  code-block:: python

        bi_gru = bidirectional_gru(input=[input1], size=512)

    :param name: bidirectional gru layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: gru layer size.
    :type size: int
    :param return_seq: If set False, outputs of the last time step are
                       concatenated and returned.
                       If set True, the entire output sequences that are
                       processed in forward and backward directions are
                       concatenated and returned.
    :type return_seq: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1151 1152 1153 1154 1155 1156
    fw = simple_gru2(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
1157

Q
qijun 已提交
1158 1159 1160 1161 1162 1163 1164
    bw = simple_gru2(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
1165 1166

    if return_seq:
Q
qijun 已提交
1167 1168
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
1169
    else:
Q
qijun 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
1179 1180


Z
zhangjinchao01 已提交
1181
@wrap_name_default("bidirectional_lstm")
Q
qijun 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
def bidirectional_lstm(input,
                       size,
                       name=None,
                       return_seq=False,
                       fwd_mat_param_attr=None,
                       fwd_bias_param_attr=None,
                       fwd_inner_param_attr=None,
                       fwd_act=None,
                       fwd_gate_act=None,
                       fwd_state_act=None,
                       fwd_mixed_layer_attr=None,
                       fwd_lstm_cell_attr=None,
                       bwd_mat_param_attr=None,
                       bwd_bias_param_attr=None,
                       bwd_inner_param_attr=None,
                       bwd_act=None,
                       bwd_gate_act=None,
                       bwd_state_act=None,
                       bwd_mixed_layer_attr=None,
                       bwd_lstm_cell_attr=None,
                       last_seq_attr=None,
                       first_seq_attr=None,
                       concat_attr=None,
                       concat_act=None):
Z
zhangjinchao01 已提交
1206
    """
C
caoying03 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    A bidirectional_lstm is a recurrent unit that iterates over the input
    sequence both in forward and bardward orders, and then concatenate two
    outputs form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    Please refer to  **Neural Machine Translation by Jointly Learning to Align
    and Translate** for more details about the bidirectional lstm.
    The link goes as follows:
    .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    The example usage is:

    ..  code-block:: python

1222
        bi_lstm = bidirectional_lstm(input=[input1], size=512)
Z
zhangjinchao01 已提交
1223 1224 1225 1226 1227 1228 1229

    :param name: bidirectional lstm layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
C
caoying03 已提交
1230 1231 1232 1233 1234
    :param return_seq: If set False, outputs of the last time step are
                       concatenated and returned.
                       If set True, the entire output sequences that are
                       processed in forward and backward directions are
                       concatenated and returned.
Z
zhangjinchao01 已提交
1235
    :type return_seq: bool
1236
    :return: LayerOutput object accroding to the return_seq.
Z
zhangjinchao01 已提交
1237 1238 1239 1240
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1241 1242 1243 1244 1245 1246
    fw = simple_lstm(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
Z
zhangjinchao01 已提交
1247

Q
qijun 已提交
1248 1249 1250 1251 1252 1253 1254
    bw = simple_lstm(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
Z
zhangjinchao01 已提交
1255 1256

    if return_seq:
Q
qijun 已提交
1257 1258
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
Z
zhangjinchao01 已提交
1259
    else:
Q
qijun 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
Z
zhangjinchao01 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281


@wrap_name_default()
@wrap_act_default(param_names=['weight_act'], act=TanhActivation())
def simple_attention(encoded_sequence,
                     encoded_proj,
                     decoder_state,
                     transform_param_attr=None,
                     softmax_param_attr=None,
                     weight_act=None,
                     name=None):
    """
    Calculate and then return a context vector by attention machanism.
1282
    Size of the context vector equals to size of the encoded_sequence.
Z
zhangjinchao01 已提交
1283 1284

    ..  math::
L
luotao02 已提交
1285 1286 1287 1288 1289

        a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})

        e_{i,j} & = a(s_{i-1}, h_{j})

1290
        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}
L
luotao02 已提交
1291 1292

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j}
Z
zhangjinchao01 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    where :math:`h_{j}` is the jth element of encoded_sequence,
    :math:`U_{a}h_{j}` is the jth element of encoded_proj
    :math:`s_{i-1}` is decoder_state
    :math:`f` is weight_act, and is set to tanh by default.

    Please refer to **Neural Machine Translation by Jointly Learning to
    Align and Translate** for more details. The link is as follows:
    https://arxiv.org/abs/1409.0473.

    The example usage is:
L
luotao02 已提交
1304

Z
zhangjinchao01 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    ..  code-block:: python

        context = simple_attention(encoded_sequence=enc_seq,
                                   encoded_proj=enc_proj,
                                   decoder_state=decoder_prev,)

    :param name: name of the attention model.
    :type name: basestring
    :param softmax_param_attr: parameter attribute of sequence softmax
                               that is used to produce attention weight
    :type softmax_param_attr: ParameterAttribute
    :param weight_act: activation of the attention model
    :type weight_act: Activation
    :param encoded_sequence: output of the encoder
    :type encoded_sequence: LayerOutput
    :param encoded_proj: attention weight is computed by a feed forward neural
                         network which has two inputs : decoder's hidden state
                         of previous time step and encoder's output.
                         encoded_proj is output of the feed-forward network for
                         encoder's output. Here we pre-compute it outside
                         simple_attention for speed consideration.
    :type encoded_proj: LayerOutput
    :param decoder_state: hidden state of decoder in previous time step
    :type decoder_state: LayerOutput
    :param transform_param_attr: parameter attribute of the feed-forward
                                network that takes decoder_state as inputs to
                                compute attention weight.
    :type transform_param_attr: ParameterAttribute
    :return: a context vector
    """
    assert encoded_proj.size == decoder_state.size
    proj_size = encoded_proj.size

    with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
Q
qijun 已提交
1339 1340
        m += full_matrix_projection(
            decoder_state, param_attr=transform_param_attr)
Z
zhangjinchao01 已提交
1341

Q
qijun 已提交
1342 1343
    expanded = expand_layer(
        input=m, expand_as=encoded_sequence, name='%s_expand' % name)
Z
zhangjinchao01 已提交
1344

Q
qijun 已提交
1345 1346
    with mixed_layer(
            size=proj_size, act=weight_act, name="%s_combine" % name) as m:
Z
zhangjinchao01 已提交
1347 1348 1349 1350 1351
        m += identity_projection(expanded)
        m += identity_projection(encoded_proj)

    # sequence softmax is used to normalize similarities between decoder state
    # and encoder outputs into a distribution
Q
qijun 已提交
1352 1353 1354 1355 1356 1357 1358
    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)
Z
zhangjinchao01 已提交
1359

Q
qijun 已提交
1360 1361 1362 1363
    scaled = scaling_layer(
        weight=attention_weight,
        input=encoded_sequence,
        name='%s_scaling' % name)
Z
zhangjinchao01 已提交
1364

Q
qijun 已提交
1365 1366
    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
Z
zhangjinchao01 已提交
1367 1368


1369 1370 1371 1372 1373 1374 1375 1376
def inputs(layers, *args):
    """
    Declare the inputs of network. The order of input should be as same as
    the data provider's return order.

    :param layers: Input Layers.
    :type layers: list|tuple|LayerOutput.
    :return:
Z
zhangjinchao01 已提交
1377 1378
    """

1379 1380 1381 1382
    if isinstance(layers, LayerOutput) or isinstance(layers, basestring):
        layers = [layers]
    if len(args) != 0:
        layers.extend(args)
Z
zhangjinchao01 已提交
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392
    Inputs(*[l.name for l in layers])


def outputs(layers, *args):
    """
    Declare the outputs of network. If user have not defined the inputs of
    network, this method will calculate the input order by dfs travel.

    :param layers: Output layers.
Z
zhangjinchao01 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    :type layers: list|tuple|LayerOutput
    :return:
    """

    def __dfs_travel__(layer,
                       predicate=lambda x: x.layer_type == LayerType.DATA):
        """
        DFS LRV Travel for output layer.

        The return order is define order for data_layer in this leaf node.

        :param layer:
        :type layer: LayerOutput
        :return:
        """
        assert isinstance(layer, LayerOutput), "layer is %s" % (layer)
        retv = []
        if layer.parents is not None:
            for p in layer.parents:
                retv.extend(__dfs_travel__(p, predicate))

        if predicate(layer):
            retv.append(layer)
        return retv

    if isinstance(layers, LayerOutput):
        layers = [layers]

1421 1422 1423
    if len(args) != 0:
        layers.extend(args)

Z
zhangjinchao01 已提交
1424
    assert len(layers) > 0
1425 1426 1427 1428 1429

    if HasInputsSet():  # input already set
        Outputs(*[l.name for l in layers])
        return  # just return outputs.

Z
zhangjinchao01 已提交
1430
    if len(layers) != 1:
1431
        logger.warning("`outputs` routine try to calculate network's"
Z
zhangjinchao01 已提交
1432 1433 1434 1435 1436 1437 1438
                       " inputs and outputs order. It might not work well."
                       "Please see follow log carefully.")
    inputs = []
    outputs_ = []
    for each_layer in layers:
        assert isinstance(each_layer, LayerOutput)
        inputs.extend(__dfs_travel__(each_layer))
Q
qijun 已提交
1439 1440 1441
        outputs_.extend(
            __dfs_travel__(each_layer,
                           lambda x: x.layer_type == LayerType.COST))
Z
zhangjinchao01 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

    # Currently, we got each leaf node's inputs order, output order.
    # We merge them together.

    final_inputs = []
    final_outputs = []

    for each_input in inputs:
        assert isinstance(each_input, LayerOutput)
        if each_input.name not in final_inputs:
            final_inputs.append(each_input.name)

    for each_output in outputs_:
        assert isinstance(each_output, LayerOutput)
        if each_output.name not in final_outputs:
            final_outputs.append(each_output.name)

Q
qijun 已提交
1459
    logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
1460 1461 1462 1463

    if len(final_outputs) == 0:
        final_outputs = map(lambda x: x.name, layers)

Q
qijun 已提交
1464 1465
    logger.info("".join(
        ["The output order is [", ", ".join(final_outputs), "]"]))
Z
zhangjinchao01 已提交
1466 1467

    Inputs(*final_inputs)
1468
    Outputs(*final_outputs)