data_transform.cc 3.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace framework {

24 25 26 27 28
static void PassTensorData(Tensor* from, Tensor* to) {
  to->ShareDataWith(*from);
  *from = Tensor();
}

29 30
void DataTransform(const OpKernelType& expected_kernel_type,
                   const OpKernelType& kernel_type_for_var,
31 32 33 34 35
                   const Tensor& input_tensor, Tensor* output_tensor) {
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
M
mozga-intel 已提交
36 37
  DataLayout lin = kernel_type_for_var.data_layout_;
  DataLayout lout = expected_kernel_type.data_layout_;
38 39

  // do layout transform
M
mozga-intel 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  if (NeedTransformLayout(lout, lin)) {
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
          "No layout transform needed between two MKLDNN OPKernels");

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
        out.ShareDataWith(input_tensor);
        out.set_layout(DataLayout::kMKLDNN);
        out.set_format(ToMKLDNNFormat(lin));
#endif
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
64 65 66 67
    transformed = true;
    PassTensorData(&out, &in);
  }

68
  // do data type transform
Q
Qiao Longfei 已提交
69 70 71 72 73 74
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

75
  // do device transform
76 77
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
78
    TransDataDevice(in, expected_kernel_type.place_, &out);
79 80
    transformed = true;
    PassTensorData(&out, &in);
81
  }
82

Q
Qiao Longfei 已提交
83
  PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
84 85
  // get output data
  output_tensor->ShareDataWith(in);
86 87 88
}

void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
89
                            Variable* out_var) {
90 91
  if (in_var.IsType<LoDTensor>()) {
    auto& in_lod_tensor = in_var.Get<LoDTensor>();
92
    auto* tran_lod_tensor = out_var->GetMutable<LoDTensor>();
93 94 95 96 97
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
    tran_lod_tensor->ShareDataWith(tensor);
  } else if (in_var.IsType<SelectedRows>()) {
    auto& in_selected_rows = in_var.Get<SelectedRows>();
98
    auto* trans_selected_rows = out_var->GetMutable<SelectedRows>();
99 100 101 102 103 104 105 106
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
    PADDLE_THROW("unknown var type");
  }
}

Q
Qiao Longfei 已提交
107 108
}  // namespace framework
}  // namespace paddle