layers.py 44.6 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
2
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
Y
Yu Yang 已提交
3 4 5 6
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
    Operator
from paddle.v2.framework.initializer import ConstantInitializer, \
    NormalInitializer
7
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
8
import re
9
import cStringIO
Y
Yu Yang 已提交
10

Q
QI JUN 已提交
11
__all__ = [
Y
Yu Yang 已提交
12
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
13
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
14
    'batch_norm', 'accuracy', 'split_lod_tensor'
Q
QI JUN 已提交
15
]
Y
Yu Yang 已提交
16 17


F
fengjiayi 已提交
18 19 20
def fc(input,
       size,
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22 23 24
       name=None,
       act=None,
       num_flatten_dims=1,
25 26
       main_program=None,
       startup_program=None):
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
       param_attr: The parameters/weights to the FC Layer
       bias_attr: The bias parameter for the FC layer
       name: Name/alias of the function
       act: Activation to be applied to the output of FC layer
       num_flatten_dims: Number of columns in input
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
53 54 55 56 57 58 59
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
60 61 62
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
63 64 65 66 67 68 69 70 71 72
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
73 74
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
90 91 92
def embedding(input,
              size,
              data_type='float32',
93
              is_sparse=False,
Q
QI JUN 已提交
94
              param_attr=None,
95 96
              main_program=None,
              startup_program=None):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """
    Embedding Layer.

    Args:
       input: The input to the function
       size: The size of the layer
       data_type: The type of data : float32, float_16, int etc
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
QI JUN 已提交
117 118 119 120 121 122 123 124
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
125 126
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
127 128 129
    return tmp


Q
QI JUN 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 data_type='float32',
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=data_type)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=data_type, suffix='b')

    hidden = helper.create_tmp_variable(data_type)
    cell = helper.create_tmp_variable(data_type)
    batch_gate = helper.create_tmp_variable(data_type)
    batch_cell_pre_act = helper.create_tmp_variable(data_type)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
179 180 181 182
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
183
         append_batch_size=True,
184
         main_program=None,
185 186
         startup_program=None,
         stop_gradient=True):
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
       data_type: The type of data : float32, float_16, int etc
       type: The output type. By default it is LOD_TENSOR.
       append_batch_size: Whether or not to append the data as a batch.
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
209
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
218 219
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
220

Y
Yu Yang 已提交
221
    return helper.create_global_variable(
222 223 224 225 226
        name=name,
        shape=shape,
        dtype=data_type,
        type=type,
        stop_gradient=stop_gradient)
Y
Yu Yang 已提交
227 228 229


def _convert_(name):
230 231 232 233 234 235 236 237 238 239 240
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
241 242 243 244
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
    
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
297
def _create_op_func_(op_type):
298 299 300 301 302 303 304 305 306 307
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
308
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
309 310 311 312 313 314
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
315 316
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
317

318
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
319
        raise ValueError(
320
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
321

322 323
    for output in intermediate_outputs:
        if output.duplicable:
324 325
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
326 327 328

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
329

Y
Yang Yang(Tony) 已提交
330
    def infer_and_check_data_type(op_proto, **kwargs):
331 332 333 334
        """
        This function performs the sanity check for data_type and
        instance type.
        """
Y
Yu Yang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_data_type(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
365 366
            inputs[ipt.name] = val

367
        outputs = dict()
Y
Yu Yang 已提交
368
        out = helper.create_tmp_variable(dtype=dtype)
369 370 371
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
372
        helper.append_op(
373
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
374
        return helper.append_activation(out)
Y
Yu Yang 已提交
375 376 377

    func.__name__ = op_type
    globals()[op_type] = func
378
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
379 380 381 382 383
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
384
_create_op_func_('mul')
Q
Qiao Longfei 已提交
385
_create_op_func_('elementwise_add')
386
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
387
_create_op_func_('reshape')
Y
Yu Yang 已提交
388 389 390
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
391 392 393 394 395
_create_op_func_('reshape')
_create_op_func_('transpose')


def fill_constant(data_type, shape, value=None, program=None):
396 397 398 399 400
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input.
    """
Y
Yang Yang(Tony) 已提交
401 402 403 404 405 406 407 408 409
    helper = LayerHelper('fill_constant', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='fill_constant',
        outputs={'Out': [out]},
        attrs={'data_type': data_type,
               'shape': shape,
               'value': value})
    return out
Y
Yu Yang 已提交
410 411


412
def cast(x, data_type, main_program=None):
413 414 415 416
    """
    This function takes in the input with input_data_type
    and casts it to the output_data_type as the output.
    """
Y
Yu Yang 已提交
417 418 419 420 421 422 423 424 425 426 427
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


428
def concat(input, axis, main_program=None, startup_program=None):
429 430 431 432
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
433
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
434
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
435 436 437 438 439 440 441 442
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


443
def sums(input, main_program=None, startup_program=None):
444 445 446 447
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
448 449
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
450
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
451 452 453
    return out


454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
def split_lod_tensor(input,
                     mask,
                     level,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
    out_true = helper.create_tmp_variable(dtype=input.data_type)
    out_false = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
                     level,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


494
def cos_sim(X, Y, **kwargs):
495 496 497 498
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
499 500 501 502
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
503 504 505 506 507 508 509
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
510
    return out
D
dzhwinter 已提交
511 512


Y
Yu Yang 已提交
513
def cross_entropy(input, label, **kwargs):
514 515 516
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
517 518 519 520 521 522 523 524 525 526 527 528
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
529 530 531 532
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
533 534 535 536 537 538 539 540 541 542
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
543
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
544
    return square_out
545 546


F
fengjiayi 已提交
547
def accuracy(input, label, k=1, **kwargs):
548 549 550 551
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
565 566 567 568 569
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
570 571 572 573
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
574 575 576
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
577
                  filter_stride=1,
578
                  act=None,
D
dzhwinter 已提交
579 580 581
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
582 583
                  main_program=None,
                  startup_program=None):
584 585 586 587 588
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
D
dzhwinter 已提交
589 590 591 592 593 594 595
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
596
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
597 598 599 600 601 602 603 604
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
605
            'Filter': [filter],
D
dzhwinter 已提交
606 607 608
        },
        outputs={"Out": pre_bias},
        attrs={
609
            'contextStride': filter_stride,
610
            'contextStart': -int(filter_size / 2),
611
            'contextLength': filter_size
D
dzhwinter 已提交
612 613 614 615 616
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
617 618 619 620 621 622 623 624 625 626
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
627 628
           main_program=None,
           startup_program=None):
629 630 631 632 633 634 635
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
636 637 638 639 640 641 642 643 644 645 646
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
647 648 649 650 651 652 653
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

654 655
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
656 657

    std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
658
    filter = helper.create_parameter(
659 660 661 662
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=NormalInitializer(0.0, std, 0))
663 664 665 666 667 668 669 670 671 672 673 674 675
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
676
    pre_act = helper.append_bias_op(pre_bias, 1)
677 678

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
679 680


D
dzhwinter 已提交
681
def sequence_pool(input, pool_type, **kwargs):
682 683 684 685 686
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
687
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
688 689
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
690
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
691 692 693

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
694 695 696
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
697
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
698 699 700 701

    return pool_out


F
fengjiayi 已提交
702 703 704 705 706 707
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
708 709
           main_program=None,
           startup_program=None):
710 711 712 713
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
714 715 716 717 718 719 720 721 722 723 724
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
725
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
726 727 728 729 730 731 732 733
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
734
            "pooling_type": pool_type,
F
fengjiayi 已提交
735
            "ksize": pool_size,
C
chengduoZH 已提交
736
            "global_pooling": global_pooling,
F
fengjiayi 已提交
737 738 739 740 741
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
742 743


Q
Qiao Longfei 已提交
744 745 746 747
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
748
               epsilon=1e-05,
Q
Qiao Longfei 已提交
749 750 751
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
752 753
               main_program=None,
               startup_program=None):
754 755 756 757
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
774 775 776 777
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
778
    bias = helper.create_parameter(
779 780 781 782 783 784 785 786 787 788 789 790 791 792
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
827 828
class BlockGuard(object):
    """
829 830 831 832
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
833 834
    """

835 836
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
837
            raise TypeError("BlockGuard takes a program")
838
        self.main_program = main_program
Y
Yu Yang 已提交
839 840

    def __enter__(self):
841
        self.main_program.create_block()
Y
Yu Yang 已提交
842 843

    def __exit__(self, exc_type, exc_val, exc_tb):
844
        self.main_program.rollback()
Y
Yu Yang 已提交
845 846 847 848 849 850
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
851 852 853 854 855 856
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
857 858
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
859
            raise TypeError("StaticRNNGuard takes a StaticRNN")
860
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
861 862 863 864 865 866 867
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
868 869
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
870 871 872 873 874 875 876
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
877 878 879 880 881 882 883 884 885 886 887 888
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
889 890 891 892 893 894 895 896 897
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
898 899 900 901 902 903
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
904 905 906 907
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

908 909 910
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

925 926 927 928 929 930 931
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
932 933 934 935 936 937 938 939 940
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
941 942
        self._assert_in_rnn_block_('memory')
        if init is None:
943
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
944
                raise ValueError(
945
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
946 947 948
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
949 950 951 952
                name=var_name,
                shape=shape,
                dtype=batch_ref.data_type,
                persistable=False)
Y
Yu Yang 已提交
953 954

            parent_block.append_op(
955 956
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
957 958 959
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
960 961 962 963
                    'shape': boot_var.shape,
                    'data_type': boot_var.data_type,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
981 982
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
983 984 985 986 987
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
988
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
989 990 991 992 993 994 995 996 997
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
998 999 1000 1001 1002 1003 1004
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
1005
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1006 1007 1008
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1022
        prog = self.helper.main_program
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1039 1040
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1104 1105


Y
Yang Yang(Tony) 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
        if cond.data_type != core.DataType.BOOL:
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1182 1183 1184 1185 1186 1187
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1188 1189 1190 1191
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

        data_type = x.data_type
        c = helper.create_tmp_variable(data_type)
        h = helper.create_tmp_variable(data_type)

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1226
def lod_rank_table(x, level=0, main_program=None):
1227 1228 1229 1230
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1241 1242


1243
def lod_tensor_to_array(x, table, main_program=None):
1244 1245 1246 1247
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1248 1249 1250
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1251 1252
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=x.data_type)
1253 1254 1255 1256 1257 1258 1259 1260 1261
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1262 1263 1264 1265
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    helper = LayerHelper("array_to_lod_tensor", **locals())
    tmp = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1276
def fill_constant(shape, dtype, value, main_program=None):
1277 1278 1279 1280 1281
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified data_type and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1282
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'data_type': out.data_type,
            'value': float(value)
        })
    out.stop_gradient = True
    return out


def ones(shape, dtype, main_program=None):
1298 1299 1300 1301
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1302 1303 1304 1305
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1306 1307 1308 1309
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1310 1311 1312
    return fill_constant(value=0.0, **locals())


1313
def increment(x, value=1.0, in_place=True, main_program=None):
1314 1315 1316 1317 1318
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1319
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1320
    if not in_place:
1321
        out = helper.create_tmp_variable(dtype=x.data_type)
Y
Yang Yang(Tony) 已提交
1322 1323
    else:
        out = x
Y
Yu Yang 已提交
1324 1325 1326
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1327
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1328
        attrs={'step': value})
Y
Yang Yu 已提交
1329
    return out
Y
Yu Yang 已提交
1330 1331 1332


def array_write(x, i, array=None, main_program=None):
1333 1334 1335 1336
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.data_type)
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


def less_than(x, y, cond=None, main_program=None):
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1371
def array_read(array, i, main_program=None):
1372 1373 1374 1375
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
    out = helper.create_tmp_variable(dtype=array.data_type)
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1388 1389 1390


def shrink_memory(x, i, table, main_program=None):
1391 1392 1393 1394
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1395 1396 1397
    helper = LayerHelper('shrink_memory', **locals())
    out = helper.create_tmp_variable(dtype=x.data_type)
    helper.append_op(
Y
Yang Yu 已提交
1398
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1399 1400 1401 1402 1403 1404
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1405 1406 1407


def array_length(array, main_program=None):
1408 1409 1410 1411
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1412 1413 1414 1415 1416 1417
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp