mot.py 13.8 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
G
George Ni 已提交
16 17 18
import sys
import cv2
import glob
G
George Ni 已提交
19 20
import numpy as np
from collections import OrderedDict
G
George Ni 已提交
21 22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from .dataset import DetDataset, _make_dataset, _is_valid_file
G
George Ni 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class MOTDataSet(DetDataset):
    """
    Load dataset with MOT format.
    Args:
        dataset_dir (str): root directory for dataset.
        image_lists (str|list): mot data image lists, muiti-source mot dataset.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
G
George Ni 已提交
41

G
George Ni 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    Notes:
        MOT datasets root directory following this:
            dataset/mot
            |——————image_lists
            |        |——————caltech.train  
            |        |——————caltech.val   
            |        |——————mot16.train  
            |        |——————mot17.train  
            |        ......
            |——————Caltech
            |——————MOT17
            |——————......

        All the MOT datasets have the following structure:
            Caltech
            |——————images
            |        └——————00001.jpg
            |        |—————— ...
            |        └——————0000N.jpg
            └——————labels_with_ids
                        └——————00001.txt
                        |—————— ...
                        └——————0000N.txt
            or

            MOT17
            |——————images
            |        └——————train
            |        └——————test
            └——————labels_with_ids
                        └——————train
    """

    def __init__(self,
                 dataset_dir=None,
                 image_lists=[],
                 data_fields=['image'],
G
George Ni 已提交
79
                 sample_num=-1):
G
George Ni 已提交
80 81 82 83 84 85 86 87
        super(MOTDataSet, self).__init__(
            dataset_dir=dataset_dir,
            data_fields=data_fields,
            sample_num=sample_num)
        self.dataset_dir = dataset_dir
        self.image_lists = image_lists
        if isinstance(self.image_lists, str):
            self.image_lists = [self.image_lists]
G
George Ni 已提交
88 89
        self.roidbs = None
        self.cname2cid = None
G
George Ni 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    def get_anno(self):
        if self.image_lists == []:
            return
        # only used to get categories and metric
        return os.path.join(self.dataset_dir, 'image_lists',
                            self.image_lists[0])

    def parse_dataset(self):
        self.img_files = OrderedDict()
        self.img_start_index = OrderedDict()
        self.label_files = OrderedDict()
        self.tid_num = OrderedDict()
        self.tid_start_index = OrderedDict()

        img_index = 0
        for data_name in self.image_lists:
            # check every data image list
            image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
            assert os.path.isdir(image_lists_dir), \
                "The {} is not a directory.".format(image_lists_dir)

            list_path = os.path.join(image_lists_dir, data_name)
            assert os.path.exists(list_path), \
                "The list path {} does not exist.".format(list_path)

            # record img_files, filter out empty ones
            with open(list_path, 'r') as file:
                self.img_files[data_name] = file.readlines()
                self.img_files[data_name] = [
                    os.path.join(self.dataset_dir, x.strip())
                    for x in self.img_files[data_name]
                ]
                self.img_files[data_name] = list(
                    filter(lambda x: len(x) > 0, self.img_files[data_name]))

                self.img_start_index[data_name] = img_index
                img_index += len(self.img_files[data_name])

            # record label_files
            self.label_files[data_name] = [
                x.replace('images', 'labels_with_ids').replace(
                    '.png', '.txt').replace('.jpg', '.txt')
                for x in self.img_files[data_name]
            ]

        for data_name, label_paths in self.label_files.items():
            max_index = -1
            for lp in label_paths:
                lb = np.loadtxt(lp)
                if len(lb) < 1:
                    continue
                if len(lb.shape) < 2:
                    img_max = lb[1]
                else:
                    img_max = np.max(lb[:, 1])
                if img_max > max_index:
                    max_index = img_max
            self.tid_num[data_name] = int(max_index + 1)

        last_index = 0
        for i, (k, v) in enumerate(self.tid_num.items()):
            self.tid_start_index[k] = last_index
            last_index += v

        self.total_identities = int(last_index + 1)
        self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
        self.total_imgs = sum(self.num_imgs_each_data)

        logger.info('=' * 80)
        logger.info('MOT dataset summary: ')
        logger.info(self.tid_num)
        logger.info('total images: {}'.format(self.total_imgs))
        logger.info('image start index: {}'.format(self.img_start_index))
        logger.info('total identities: {}'.format(self.total_identities))
        logger.info('identity start index: {}'.format(self.tid_start_index))
        logger.info('=' * 80)

        records = []
G
George Ni 已提交
169
        cname2cid = mot_label()
G
George Ni 已提交
170 171 172 173 174 175 176 177 178 179

        for img_index in range(self.total_imgs):
            for i, (k, v) in enumerate(self.img_start_index.items()):
                if img_index >= v:
                    data_name = list(self.label_files.keys())[i]
                    start_index = v
            img_file = self.img_files[data_name][img_index - start_index]
            lbl_file = self.label_files[data_name][img_index - start_index]

            if not os.path.exists(img_file):
180 181
                logger.warning('Illegal image file: {}, and it will be ignored'.
                               format(img_file))
G
George Ni 已提交
182 183
                continue
            if not os.path.isfile(lbl_file):
184 185
                logger.warning('Illegal label file: {}, and it will be ignored'.
                               format(lbl_file))
G
George Ni 已提交
186 187 188 189 190 191 192 193 194 195 196
                continue

            labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
            # each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]

            cx, cy = labels[:, 2], labels[:, 3]
            w, h = labels[:, 4], labels[:, 5]
            gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
            gt_class = labels[:, 0:1].astype('int32')
            gt_score = np.ones((len(labels), 1)).astype('float32')
            gt_ide = labels[:, 1:2].astype('int32')
197 198 199
            for i, _ in enumerate(gt_ide):
                if gt_ide[i] > -1:
                    gt_ide[i] += self.tid_start_index[data_name]
G
George Ni 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

            mot_rec = {
                'im_file': img_file,
                'im_id': img_index,
            } if 'image' in self.data_fields else {}

            gt_rec = {
                'gt_class': gt_class,
                'gt_score': gt_score,
                'gt_bbox': gt_bbox,
                'gt_ide': gt_ide,
            }

            for k, v in gt_rec.items():
                if k in self.data_fields:
                    mot_rec[k] = v

            records.append(mot_rec)
            if self.sample_num > 0 and img_index >= self.sample_num:
                break
        assert len(records) > 0, 'not found any mot record in %s' % (
            self.image_lists)
        self.roidbs, self.cname2cid = records, cname2cid


def mot_label():
    labels_map = {'person': 0}
    return labels_map


G
George Ni 已提交
230 231 232
@register
@serializable
class MOTImageFolder(DetDataset):
G
George Ni 已提交
233 234 235 236
    """
    Load MOT dataset with MOT format from image folder or video .
    Args:
        video_file (str): path of the video file, default ''.
237
        frame_rate (int): frame rate of the video, use cv2 VideoCapture if not set.
G
George Ni 已提交
238 239 240 241 242 243
        dataset_dir (str): root directory for dataset.
        keep_ori_im (bool): whether to keep original image, default False. 
            Set True when used during MOT model inference while saving
            images or video, or used in DeepSORT.
    """

G
George Ni 已提交
244
    def __init__(self,
G
George Ni 已提交
245
                 video_file=None,
246
                 frame_rate=-1,
G
George Ni 已提交
247 248 249 250 251 252 253 254
                 dataset_dir=None,
                 data_root=None,
                 image_dir=None,
                 sample_num=-1,
                 keep_ori_im=False,
                 **kwargs):
        super(MOTImageFolder, self).__init__(
            dataset_dir, image_dir, sample_num=sample_num)
G
George Ni 已提交
255
        self.video_file = video_file
G
George Ni 已提交
256 257 258 259
        self.data_root = data_root
        self.keep_ori_im = keep_ori_im
        self._imid2path = {}
        self.roidbs = None
260
        self.frame_rate = frame_rate
G
George Ni 已提交
261 262 263 264 265 266

    def check_or_download_dataset(self):
        return

    def parse_dataset(self, ):
        if not self.roidbs:
G
George Ni 已提交
267
            if self.video_file is None:
268
                self.frame_rate = 30  # set as default if infer image folder
G
George Ni 已提交
269 270 271 272 273
                self.roidbs = self._load_images()
            else:
                self.roidbs = self._load_video_images()

    def _load_video_images(self):
274 275 276 277
        if self.frame_rate == -1:
            # if frame_rate is not set for video, use cv2.VideoCapture
            cap = cv2.VideoCapture(self.video_file)
            self.frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
G
George Ni 已提交
278 279 280

        extension = self.video_file.split('.')[-1]
        output_path = self.video_file.replace('.{}'.format(extension), '')
281 282
        frames_path = video2frames(self.video_file, output_path,
                                   self.frame_rate)
G
George Ni 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        self.video_frames = sorted(
            glob.glob(os.path.join(frames_path, '*.png')))

        self.video_length = len(self.video_frames)
        logger.info('Length of the video: {:d} frames.'.format(
            self.video_length))
        ct = 0
        records = []
        for image in self.video_frames:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            if self.keep_ori_im:
                rec.update({'keep_ori_im': 1})
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records
G
George Ni 已提交
304

G
George Ni 已提交
305
    def _find_images(self):
G
George Ni 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
G
George Ni 已提交
319
        images = self._find_images()
G
George Ni 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            if self.keep_ori_im:
                rec.update({'keep_ori_im': 1})
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()

343 344
    def set_video(self, video_file, frame_rate):
        # update video_file and frame_rate by command line of tools/infer_mot.py
G
George Ni 已提交
345
        self.video_file = video_file
346
        self.frame_rate = frame_rate
G
George Ni 已提交
347 348 349 350
        assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
                "wrong or unsupported file format: {}".format(self.video_file)
        self.roidbs = self._load_video_images()

G
George Ni 已提交
351

G
George Ni 已提交
352 353 354 355
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
    return f.lower().endswith(extensions)


356
def video2frames(video_path, outpath, frame_rate, **kargs):
G
George Ni 已提交
357 358 359 360 361
    def _dict2str(kargs):
        cmd_str = ''
        for k, v in kargs.items():
            cmd_str += (' ' + str(k) + ' ' + str(v))
        return cmd_str
G
George Ni 已提交
362

G
George Ni 已提交
363 364 365
    ffmpeg = ['ffmpeg ', ' -y -loglevel ', ' error ']
    vid_name = os.path.basename(video_path).split('.')[0]
    out_full_path = os.path.join(outpath, vid_name)
G
George Ni 已提交
366

G
George Ni 已提交
367 368
    if not os.path.exists(out_full_path):
        os.makedirs(out_full_path)
G
George Ni 已提交
369

G
George Ni 已提交
370 371
    # video file name
    outformat = os.path.join(out_full_path, '%08d.png')
G
George Ni 已提交
372

G
George Ni 已提交
373
    cmd = ffmpeg
374 375 376
    cmd = ffmpeg + [
        ' -i ', video_path, ' -r ', str(frame_rate), ' -f image2 ', outformat
    ]
G
George Ni 已提交
377 378
    cmd = ''.join(cmd) + _dict2str(kargs)

379 380
    if os.system(cmd) != 0:
        raise RuntimeError('ffmpeg process video: {} error'.format(video_path))
G
George Ni 已提交
381 382 383 384
        sys.exit(-1)

    sys.stdout.flush()
    return out_full_path