ppyoloe_crn_l_36e_coco_xpu.yml 1.5 KB
Newer Older
1
_BASE_: [
2 3
  '../datasets/coco_detection.yml',
  '../runtime.yml',
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
  './_base_/optimizer_36e_xpu.yml',
  './_base_/ppyoloe_reader.yml',
]

# note: these are default values (use_gpu = true and use_xpu = false) for CI.
# set use_gpu = false and use_xpu = true for training.
use_gpu: true
use_xpu: false

log_iter: 100
snapshot_epoch: 1
weights: output/ppyoloe_crn_l_36e_coco/model_final
find_unused_parameters: True

pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_l_pretrained.pdparams
depth_mult: 1.0
width_mult: 1.0

TrainReader:
  batch_size: 8

architecture: YOLOv3
norm_type: sync_bn
use_ema: true
ema_decay: 0.9998
29 30
ema_black_list: ['proj_conv.weight']
custom_black_list: ['reduce_mean']
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

YOLOv3:
  backbone: CSPResNet
  neck: CustomCSPPAN
  yolo_head: PPYOLOEHead
  post_process: ~

CSPResNet:
  layers: [3, 6, 6, 3]
  channels: [64, 128, 256, 512, 1024]
  return_idx: [1, 2, 3]
  use_large_stem: True

CustomCSPPAN:
  out_channels: [768, 384, 192]
  stage_num: 1
  block_num: 3
  act: 'swish'
  spp: true

PPYOLOEHead:
  fpn_strides: [32, 16, 8]
  grid_cell_scale: 5.0
  grid_cell_offset: 0.5
  static_assigner_epoch: 4
  use_varifocal_loss: True
  loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5}
  static_assigner:
    name: ATSSAssigner
    topk: 9
  assigner:
    name: TaskAlignedAssigner
    topk: 13
    alpha: 1.0
    beta: 6.0
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
69
    keep_top_k: 300
70
    score_threshold: 0.01
71
    nms_threshold: 0.7