README.md 7.6 KB
Newer Older
1
# Python Data Reader Design Doc
2

H
Helin Wang 已提交
3 4 5 6
At training and testing time, PaddlePaddle programs need to read data. To ease the users' work to write data reading code, we define that

- A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items.
- A *reader creator* is a function that returns a reader function.
7 8
- A *reader decorator* is a function, which accepts one or more readers, and returns a reader.
- A *batch reader* is a function that reads data (from *reader*, file, network, random number generator, etc) and yields a batch of data items.
H
Helin Wang 已提交
9

10
and provide function which converts reader to batch reader, frequently used reader creators and reader decorators.
11

12
## Data Reader Interface
13

H
Helin Wang 已提交
14
Indeed, *data reader* doesn't have to be a function that reads and yields data items. It can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`):
15 16

```
17
iterable = data_reader()
18 19
```

H
Helin Wang 已提交
20
Element produced from the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of [supported type](http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types) (e.g., numpy 1d array of float32, int, list of int)
21

H
Helin Wang 已提交
22
An example implementation for single item data reader creator:
23

H
Helin Wang 已提交
24
```python
H
Helin Wang 已提交
25
def reader_creator_random_image(width, height):
Y
Yu Yang 已提交
26 27 28 29
    def reader():
        while True:
            yield numpy.random.uniform(-1, 1, size=width*height)
    return reader
H
Helin Wang 已提交
30 31
```

H
Helin Wang 已提交
32
An example implementation for multiple item data reader creator:
H
Helin Wang 已提交
33
```python
Y
Yu Yang 已提交
34 35 36 37 38
def reader_creator_random_image_and_label(width, height, label):
    def reader():
        while True:
            yield numpy.random.uniform(-1, 1, size=width*height), label
    return reader
39
```
H
Helin Wang 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54
## Batch Reader Interface

*batch reader* can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple.

Here are valid outputs:
```python
# a mini batch of three data items. Each data item consist three columns of data, each of which is 1.
[(1, 1, 1),
(2, 2, 2),
(3, 3, 3)]

# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
P
Peng Li 已提交
55
([3,3,3],)]
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
```

Please note that each item inside the list must be a tuple, below is an invalid output:
```python
 # wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).
 # Otherwise it's ambiguous whether [1,1,1] means a single column of data [1, 1, 1],
 # or three column of datas, each of which is 1.
[[1,1,1],
[2,2,2],
[3,3,3]]
```

It's easy to convert from reader to batch reader:
```python
mnist_train = paddle.dataset.mnist.train()
mnist_train_batch_reader = paddle.batch(mnist_train, 128)
```

Also easy to create custom batch reader:
```python
def custom_batch_reader():
Y
Yu Yang 已提交
77 78 79 80 81
    while True:
        batch = []
        for i in xrange(128):
            batch.append((numpy.random.uniform(-1, 1, 28*28),)) # note that it's a tuple being appended.
        yield batch
82 83 84 85

mnist_random_image_batch_reader = custom_batch_reader
```

86 87
## Usage

88
batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
89 90 91 92 93 94 95

```python
# two data layer is created:
image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...)

# ...
96 97
batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128)
paddle.train(batch_reader, {"image":0, "label":1}, 128, 10, ...)
98 99
```

100
## Data Reader Decorator
H
Helin Wang 已提交
101

102
*Data reader decorator* takes a single or multiple data reader, returns a new data reader. It is similar to a [python decorator](https://wiki.python.org/moin/PythonDecorators), but it does not use `@` syntax.
H
Helin Wang 已提交
103

104
Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples:
H
Helin Wang 已提交
105 106 107 108 109 110 111 112

### Prefetch Data

Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data.

Use `paddle.reader.buffered` to prefetch data:

```python
113
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist.train(), 100)
H
Helin Wang 已提交
114 115
```

116
`buffered_reader` will try to buffer (prefetch) `100` data entries.
H
Helin Wang 已提交
117

118
### Compose Multiple Data Readers
H
Helin Wang 已提交
119

H
Helin Wang 已提交
120
For example, we want to use a source of real images (reusing mnist dataset), and a source of random images as input for [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
H
Helin Wang 已提交
121 122 123 124

We can do:

```python
H
Helin Wang 已提交
125
def reader_creator_random_image(width, height):
Y
Yu Yang 已提交
126 127 128 129
    def reader():
        while True:
            yield numpy.random.uniform(-1, 1, size=width*height)
    return reader
H
Helin Wang 已提交
130

H
Helin Wang 已提交
131
def reader_creator_bool(t):
Y
Yu Yang 已提交
132 133 134 135
    def reader:
        while True:
            yield t
    return reader
H
Helin Wang 已提交
136

H
Helin Wang 已提交
137 138
true_reader = reader_creator_bool(True)
false_reader = reader_creator_bool(False)
H
Helin Wang 已提交
139

140 141
reader = paddle.reader.compose(paddle.dataset.mnist.train(), data_reader_creator_random_image(20, 20), true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.
142
# And we don't care second item at this time.
143
paddle.train(paddle.batch(reader, 128), {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
H
Helin Wang 已提交
144 145 146 147
```

### Shuffle

148
Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader that buffers `n` data entries and shuffle them before a data entry is read.
H
Helin Wang 已提交
149 150 151

Example:
```python
152
reader = paddle.reader.shuffle(paddle.dataset.mnist.train(), 512)
153 154 155 156
```

## Q & A

157 158 159 160 161
### Why reader return only a single entry, but not a mini batch?

Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).

We provide function `paddle.batch` to turn (single entry) reader into batch reader.
162

163
### Why do we need batch reader, isn't train take reader and batch_size as arguments sufficient?
164

165
In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically.
166

H
Helin Wang 已提交
167 168 169 170
### Why use a dictionary but not a list to provide mapping?

We decided to use dictionary (`{"image":0, "label":1}`) instead of list (`["image", "label"]`) is because that user can easily resue item (e.g., using `{"image_a":0, "image_b":0, "label":1}`) or skip item (e.g., using `{"image_a":0, "label":2}`).

H
Helin Wang 已提交
171
### How to create custom data reader creator
172 173

```python
174
def image_reader_creator(image_path, label_path, n):
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186
    def reader():
        f = open(image_path)
        l = open(label_path)
        images = numpy.fromfile(
            f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
        images = images / 255.0 * 2.0 - 1.0
        labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
        for i in xrange(n):
            yield images[i, :], labels[i] # a single entry of data is created each time
        f.close()
        l.close()
    return reader
187

188 189
# images_reader_creator creates a reader
reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024)
190
paddle.train(paddle.batch(reader, 128), {"image":0, "label":1}, ...)
191 192 193 194 195 196 197
```

### How is `paddle.train` implemented

An example implementation of paddle.train could be:

```python
198
def train(batch_reader, mapping, batch_size, total_pass):
Y
Yu Yang 已提交
199 200 201
    for pass_idx in range(total_pass):
        for mini_batch in batch_reader(): # this loop will never end in online learning.
            do_forward_backward(mini_batch, mapping)
202
```