dataprovider_converter.py 6.0 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.trainer.PyDataProvider2 as dp2
import collections
import swig_paddle

__all__ = ['DataProviderConverter']


class IScanner(object):
    def __init__(self, input_type, pos):
        self.input_type = input_type
        assert isinstance(self.input_type, dp2.InputType)
        self.pos = pos

    def scan(self, dat):
        pass

    def finish_scan(self, argument):
        pass


class DenseScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__mat__ = []
        self.__height__ = 0

    def scan(self, dat):
        self.__mat__.extend(dat)
        self.__height__ += 1

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
        assert isinstance(self.input_type, dp2.InputType)
        m = swig_paddle.Matrix.createDense(self.__mat__,
                                           self.__height__,
                                           self.input_type.dim,
                                           False)
        argument.setSlotValue(self.pos, m)


class SparseBinaryScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__rows__ = [0]
        self.__cols__ = []
        self.__height__ = 0
        self.__nnz__ = 0
        self.__value__ = []

    def scan(self, dat):
        self.extend_cols(dat)
        self.__rows__.append(len(dat))

    def extend_cols(self, dat):
        self.__cols__.extend(dat)

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
        assert isinstance(self.input_type, dp2.InputType)
        m = swig_paddle.Matrix.createSparse(self.__height__,
                                            self.input_type.dim,
                                            len(self.__cols__),
                                            len(self.__value__) == 0)
        assert isinstance(m, swig_paddle.Matrix)
        m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
        argument.setSlotValue(self.pos, m)


class SparseFloatScanner(SparseBinaryScanner):
    def __init__(self, input_type, pos):
        SparseBinaryScanner.__init__(self, input_type, pos)

    def extend_cols(self, dat):
        self.__cols__.extend((x[0] for x in dat))
        self.__value__.extend((x[1] for x in dat))


class IndexScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__ids__ = []

    def scan(self, dat):
        self.__ids__.append(dat)

    def finish_scan(self, argument):
        ids = swig_paddle.IVector.create(self.__ids__)
        assert isinstance(argument, swig_paddle.Arguments)
        argument.setSlotIds(self.pos, ids)


class SequenceScanner(IScanner):
    def __init__(self, input_type, pos, inner_scanner, setter):
        IScanner.__init__(self, input_type, pos)
        self.__seq__ = [0]
        self.__inner_scanner__ = inner_scanner
        self.__setter__ = setter

    def scan(self, dat):
        self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
        for each in dat:
            self.__inner_scanner__.scan(each)

    def finish_scan(self, argument):
        seq = swig_paddle.IVector.create(self.__seq__, False)
        self.__setter__(argument, self.pos, seq)
        self.__inner_scanner__.finish_scan(argument)

    def get_size(self, dat):
        if isinstance(self.__inner_scanner__, SequenceScanner):
            return sum(self.__inner_scanner__.get_size(item) for item in dat)
        else:
            return len(dat)


class DataProviderConverter(object):
    def __init__(self, input_types):
        self.input_types = input_types
        assert isinstance(self.input_types, collections.Sequence)
        for each in self.input_types:
            assert isinstance(each, dp2.InputType)

    def convert(self, dat, argument=None):
        if argument is None:
            argument = swig_paddle.Arguments.createArguments(0)
        assert isinstance(argument, swig_paddle.Arguments)
        argument.resize(len(self.input_types))

        scanners = [DataProviderConverter.create_scanner(i, each_type)
                    for i, each_type in enumerate(self.input_types)]

        for each_sample in dat:
            for each_step, scanner in zip(each_sample, scanners):
                scanner.scan(each_step)

        for scanner in scanners:
            scanner.finish_scan(argument)

        return argument

    def __call__(self, dat, argument=None):
        return self.convert(dat, argument)

    @staticmethod
    def create_scanner(i, each):
        assert isinstance(each, dp2.InputType)
        retv = None
        if each.type == dp2.DataType.Dense:
            retv = DenseScanner(each, i)
        elif each.type == dp2.DataType.Index:
            retv = IndexScanner(each, i)
        elif each.type == dp2.DataType.SparseNonValue:
            retv = SparseBinaryScanner(each, i)
        elif each.type == dp2.DataType.SparseValue:
            retv = SparseFloatScanner(each, i)
        assert retv is not None

        if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
            retv = SequenceScanner(each, i, retv, lambda a, p, seq:
            a.setSlotSubSequenceStartPositions(p, seq))

        if each.seq_type in [dp2.SequenceType.SUB_SEQUENCE,
                             dp2.SequenceType.SEQUENCE]:
            retv = SequenceScanner(each, i, retv, lambda a, p, seq:
            a.setSlotSequenceStartPositions(p, seq))
        return retv