conv2d_op.cc 6.2 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16 17 18 19 20

namespace paddle {
namespace inference {
namespace tensorrt {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
                   const framework::Scope& scope, bool test_mode,
                   RegistFunc fadd_layer, SetDilationFunc fset_dilation,
                   const std::string& name) {
  VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";

  framework::OpDesc op_desc(op, nullptr);
  PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1);
  PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1);  // Y is a weight
  PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1);

  PADDLE_ENFORCE(engine != nullptr);
  auto* X = engine->GetITensor(op_desc.Input("Input").front());
  auto* Y_v = scope.FindVar(op_desc.Input("Filter").front());
  PADDLE_ENFORCE_NOT_NULL(Y_v);
  auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  float* weight_data = nullptr;
  bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));

  if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
    float in_scale = boost::get<float>(op_desc.GetAttr("input_scale"));
    auto weight_scale =
        boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
    weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
                                           true, weight_scale);
    engine->SetTensorDynamicRange(X, in_scale);
#endif
  } else {
    weight_data =
        engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
  }
54

55 56 57 58 59
  PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL);
  const int n_output = Y_t->dims()[0];
  const int n_input = Y_t->dims()[1];
  const int filter_h = Y_t->dims()[2];
  const int filter_w = Y_t->dims()[3];
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  const int groups = boost::get<int>(op_desc.GetAttr("groups"));
  const std::vector<int> dilations =
      boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
  const std::vector<int> strides =
      boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
  const std::vector<int> paddings =
      boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));

  nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
  nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
  nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
  nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

  TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(weight_data),
75
                                static_cast<size_t>(Y_t->numel())};
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

  TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
  auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
                           nv_ksize, weight, bias);
  PADDLE_ENFORCE(layer != nullptr);
  layer->setStride(nv_strides);
  layer->setPadding(nv_paddings);
  layer->setNbGroups(groups);
  // set dilations
  fset_dilation(layer, nv_dilations);

  auto output_name = op_desc.Output("Output").front();
  layer->setName((name + " (Output: " + output_name + ")").c_str());
  layer->getOutput(0)->setName(output_name.c_str());
  engine->SetITensor(output_name, layer->getOutput(0));

92 93 94 95 96 97 98
#if IS_TRT_VERSION_GE(5000)
  if (enable_int8) {
    float output_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
    engine->SetTensorDynamicRange(layer->getOutput(0), output_scale);
  }
#endif

N
nhzlx 已提交
99
  if (test_mode) {
100 101 102 103
    engine->DeclareOutput(output_name);
  }
}

L
Luo Tao 已提交
104 105
class Conv2dOpConverter : public OpConverter {
 public:
106
  void operator()(const framework::proto::OpDesc& op,
107
                  const framework::Scope& scope, bool test_mode) override {
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
            int n_input,                             /* Conv input maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          layer->setDilation(dilations);
        },
        "conv2d");
  }
};

class Deconv2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
            int n_input,                             /* Deconv output maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          PADDLE_ENFORCE(
              dilations.d[0] == 1 && dilations.d[1] == 1,
              "Dilations must be (1, 1) for tensorRT, but given (%d, %d)",
              dilations.d[0], dilations.d[1]);
        },
        "conv2d_transpose");
L
Luo Tao 已提交
148 149
  }
};
L
Luo Tao 已提交
150

L
Luo Tao 已提交
151 152 153
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
154 155

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
156
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);