test_inference_nlp.cc 3.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");

TEST(inference, understand_sentiment) {
  if (FLAGS_dirname.empty()) {
    LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
  }

  LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
  paddle::framework::LoDTensor words;
  /*
T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    paddle::framework::LoD lod{{0, 83}};
    int64_t word_dict_len = 198392;
    SetupLoDTensor(&words, lod, static_cast<int64_t>(0),
                   static_cast<int64_t>(word_dict_len - 1));
   */
  std::vector<int64_t> srcdata{
      784,    784,   1550,   6463,   56,     75693, 6189,  784,    784,  1550,
      198391, 6463,  42468,  4376,   10251,  10760, 6189,  297,    396,  6463,
      6463,   1550,  198391, 6463,   22564,  1612,  291,   68,     164,  784,
      784,    1550,  198391, 6463,   13659,  3362,  42468, 6189,   2209, 198391,
      6463,   2209,  2209,   198391, 6463,   2209,  1062,  3029,   1831, 3029,
      1065,   2281,  100,    11216,  1110,   56,    10869, 9811,   100,  198391,
      6463,   100,   9280,   100,    288,    40031, 1680,  1335,   100,  1550,
      9280,   7265,  244,    1550,   198391, 6463,  1550,  198391, 6463, 42468,
      4376,   10251, 10760};
  paddle::framework::LoD lod{{0, srcdata.size()}};
  words.set_lod(lod);
  int64_t* pdata = words.mutable_data<int64_t>(
      {static_cast<int64_t>(srcdata.size()), 1}, paddle::platform::CPUPlace());
  memcpy(pdata, srcdata.data(), words.numel() * sizeof(int64_t));

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  LOG(INFO) << "number of input size:" << words.numel();
  std::vector<paddle::framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&words);

  paddle::framework::LoDTensor output1;
  std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  int repeat = 100;
  // Run inference on CPU
  TestInference<paddle::platform::CPUPlace, true, true>(dirname, cpu_feeds,
                                                        cpu_fetchs1, repeat);
  LOG(INFO) << output1.lod();
  LOG(INFO) << output1.dims();

#ifdef PADDLE_WITH_CUDA
  paddle::framework::LoDTensor output2;
  std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
  cpu_fetchs2.push_back(&output2);

  // Run inference on CUDA GPU
  TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
  LOG(INFO) << output2.lod();
  LOG(INFO) << output2.dims();

  CheckError<float>(output1, output2);
#endif
}