cudnn_helper.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

D
dzhwinter 已提交
62
#if !defined(_WIN32)
T
typhoonzero 已提交
63 64 65 66 67 68
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
    cudnnStatus_t status = condition;                                \
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
69
  } while (false)
D
dzhwinter 已提交
70
#else
D
dzhwinter 已提交
71 72 73 74 75 76 77 78
// windows
#define CUDNN_ENFORCE(condition)                                    \
  do {                                                              \
    cudnnStatus_t status = condition;                               \
    if (status != CUDNN_STATUS_SUCCESS) {                           \
      std::cerr << ::paddle::platform::cudnnGetErrorString(status); \
    }                                                               \
  } while (false)
D
dzhwinter 已提交
79
#endif
Q
Qiao Longfei 已提交
80

D
"fix"  
dzhwinter 已提交
81 82 83 84 85 86 87 88 89 90
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
91 92
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
93 94
};

D
"done"  
dzhwinter 已提交
95 96 97 98 99 100
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
101

D
dzhwinter 已提交
102 103 104 105
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
106
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
107
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
108 109
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
110 111 112 113 114 115 116
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
117

D
dzhwinter 已提交
118 119 120 121
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
122
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
123
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
124 125
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
126 127 128 129 130 131
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
132 133
#endif  // CUDNN_VERSION < 6000

D
dangqingqing 已提交
134 135 136
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
137 138 139 140
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
141
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
142 143
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
144
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
145
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
146 147 148
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
149
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
150 151 152 153
    return &v;
  }
};

D
dangqingqing 已提交
154 155 156 157
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
158 159
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
160 161 162 163 164 165 166 167
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
168 169 170 171 172 173
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
174 175
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
176 177 178 179 180 181 182 183
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
184 185
};

C
chengduoZH 已提交
186 187
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
188 189 190 191 192
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
193
    case DataLayout::kNCDHW:
武毅 已提交
194
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
212 213 214
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
215 216
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
217 218
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
219
    }
武毅 已提交
220
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
221
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
222 223 224 225
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
226
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
227 228
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
229 230 231 232 233
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
234 235 236 237
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
256 257
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
258
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
259
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
260 261
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
262 263 264 265 266
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
267
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
268 269
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
270 271 272 273 274
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
275 276
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
277
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
278
                      kernel, groups);
D
dangqingqing 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
300

301
#if !CUDNN_VERSION_MIN(6, 0, 0)
302 303 304 305 306
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
307 308 309
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
310 311 312
    }
#endif

K
Kexin Zhao 已提交
313 314
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
315
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
316
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
317
        CUDNN_CROSS_CORRELATION, compute_type));
318
    return desc_;
D
dangqingqing 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
348
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
349
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
350 351
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
352
    return desc_;
D
dangqingqing 已提交
353 354 355 356 357 358 359
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
  }
  ~ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
    PADDLE_ENFORCE(dynload::cudnnSetSpatialTransformerNdDescriptor(
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

382 383 384 385 386
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
387
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
388 389 390 391 392 393
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
394 395
}  // namespace platform
}  // namespace paddle