test_ops.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.dygraph import base

import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest


class TestCollectFpnProposals(LayerTest):
    def test_collect_fpn_proposals(self):
        multi_bboxes_np = []
        multi_scores_np = []
        rois_num_per_level_np = []
        for i in range(4):
            bboxes_np = np.random.rand(5, 4).astype('float32')
            scores_np = np.random.rand(5, 1).astype('float32')
            rois_num = np.array([2, 3]).astype('int32')
            multi_bboxes_np.append(bboxes_np)
            multi_scores_np.append(scores_np)
            rois_num_per_level_np.append(rois_num)

        paddle.enable_static()
        with self.static_graph():
            multi_bboxes = []
            multi_scores = []
            rois_num_per_level = []
            for i in range(4):
                bboxes = paddle.static.data(
                    name='rois' + str(i),
                    shape=[5, 4],
                    dtype='float32',
                    lod_level=1)
                scores = paddle.static.data(
                    name='scores' + str(i),
                    shape=[5, 1],
                    dtype='float32',
                    lod_level=1)
                rois_num = paddle.static.data(
                    name='rois_num' + str(i), shape=[None], dtype='int32')

                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
                rois_num_per_level.append(rois_num)

            fpn_rois, rois_num = ops.collect_fpn_proposals(
                multi_bboxes,
                multi_scores,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level)
            feed = {}
            for i in range(4):
                feed['rois' + str(i)] = multi_bboxes_np[i]
                feed['scores' + str(i)] = multi_scores_np[i]
                feed['rois_num' + str(i)] = rois_num_per_level_np[i]
            fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
                feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True)
            fpn_rois_stat = np.array(fpn_rois_stat)
            rois_num_stat = np.array(rois_num_stat)

        paddle.disable_static()
        with self.dynamic_graph():
            multi_bboxes_dy = []
            multi_scores_dy = []
            rois_num_per_level_dy = []
            for i in range(4):
                bboxes_dy = base.to_variable(multi_bboxes_np[i])
                scores_dy = base.to_variable(multi_scores_np[i])
                rois_num_dy = base.to_variable(rois_num_per_level_np[i])
                multi_bboxes_dy.append(bboxes_dy)
                multi_scores_dy.append(scores_dy)
                rois_num_per_level_dy.append(rois_num_dy)
            fpn_rois_dy, rois_num_dy = ops.collect_fpn_proposals(
                multi_bboxes_dy,
                multi_scores_dy,
                2,
                5,
                10,
                rois_num_per_level=rois_num_per_level_dy)
            fpn_rois_dy = fpn_rois_dy.numpy()
            rois_num_dy = rois_num_dy.numpy()

        self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy))
        self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy))

    def test_collect_fpn_proposals_error(self):
        def generate_input(bbox_type, score_type, name):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = paddle.static.data(
                    name='rois' + name + str(i),
                    shape=[10, 4],
                    dtype=bbox_type,
                    lod_level=1)
                scores = paddle.static.data(
                    name='scores' + name + str(i),
                    shape=[10, 1],
                    dtype=score_type,
                    lod_level=1)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            return multi_bboxes, multi_scores

        paddle.enable_static()
        program = Program()
        with program_guard(program):
            bbox1 = paddle.static.data(
                name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
            score1 = paddle.static.data(
                name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
            bbox2, score2 = generate_input('int32', 'float32', '2')
            self.assertRaises(
                TypeError,
                ops.collect_fpn_proposals,
                multi_rois=bbox1,
                multi_scores=score1,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)
            self.assertRaises(
                TypeError,
                ops.collect_fpn_proposals,
                multi_rois=bbox2,
                multi_scores=score2,
                min_level=2,
                max_level=5,
                post_nms_top_n=2000)


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
class TestDistributeFpnProposals(LayerTest):
    def test_distribute_fpn_proposals(self):
        rois_np = np.random.rand(10, 4).astype('float32')
        rois_num_np = np.array([4, 6]).astype('int32')
        with self.static_graph():
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')
            multi_rois, restore_ind, rois_num_per_level = ops.distribute_fpn_proposals(
                fpn_rois=rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num)
            fetch_list = multi_rois + [restore_ind] + rois_num_per_level
            output_stat = self.get_static_graph_result(
                feed={'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=fetch_list,
                with_lod=True)
            output_stat_np = []
            for output in output_stat:
                output_np = np.array(output)
                if len(output_np) > 0:
                    output_stat_np.append(output_np)

        with self.dynamic_graph():
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
            multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = ops.distribute_fpn_proposals(
                fpn_rois=rois_dy,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224,
                rois_num=rois_num_dy)
            output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
            output_dy_np = []
            for output in output_dy:
                output_np = output.numpy()
                if len(output_np) > 0:
                    output_dy_np.append(output_np)

        for res_stat, res_dy in zip(output_stat_np, output_dy_np):
            self.assertTrue(np.array_equal(res_stat, res_dy))

    def test_distribute_fpn_proposals_error(self):
        program = Program()
        with program_guard(program):
            fpn_rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
                ops.distribute_fpn_proposals,
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)


220 221
if __name__ == '__main__':
    unittest.main()