distribute_transpiler.py 52.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
    params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42

Y
Yancey1989 已提交
43
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
44
from .. import core, framework
T
typhoonzero 已提交
45 46 47
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
48
from details import *
49 50 51

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
52
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
53 54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
56 57


T
typhoonzero 已提交
58 59 60 61 62 63
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
64

T
typhoonzero 已提交
65 66
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
67 68


69 70 71 72
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


73
def split_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
74
    """
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
91 92 93
    """
    blocks = []
    for var in var_list:
94
        split_count = service_count
T
typhoonzero 已提交
95 96 97 98
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
99
        if max_pserver_count < service_count:
T
typhoonzero 已提交
100 101 102 103 104 105 106 107 108
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
109
        # update split_count after aligning
T
typhoonzero 已提交
110 111 112 113 114 115 116 117 118
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
119
class DistributeTranspiler:
120
    def _has_distributed_lookup_table(self):
121 122 123 124 125 126
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
127
        for op in self.origin_program.global_block().ops:
128 129 130 131 132 133 134 135 136 137 138 139
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

140
        return len(distributed_lookup_table_ops) > 0
141

142 143 144 145 146
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
147 148 149 150 151 152
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
153
                if grad.name != grad_var_name(self.table_name)
154 155 156 157 158 159
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
160
            if self.sync_mode:
161
                self.trainer_side_table_grad_list = [
162 163
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
164
                        (table_grad_var.name, self.trainer_id, index),
165 166 167 168 169 170
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
171
                self.trainer_side_table_grad_list = [
172 173 174 175 176 177 178
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
179

180 181 182 183 184 185 186 187 188
    def _init_splited_vars(self, split_method):
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
Y
yi.wu 已提交
189
        param_grad_set = set()
190 191 192 193
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
Y
yi.wu 已提交
194 195 196 197 198 199
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)
200 201 202 203 204 205

        self._update_dist_lookup_table_vars(param_list, grad_list,
                                            self.params_grads)

        grad_blocks = split_variable(grad_list, len(self.pserver_endpoints))
        param_blocks = split_variable(param_list, len(self.pserver_endpoints))
Y
update  
Yancey1989 已提交
206
        assert (len(grad_blocks) == len(param_blocks))
207 208 209 210 211 212 213 214
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
215 216 217
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
218 219
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
220

221
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
222
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
223 224 225 226 227 228 229 230 231
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
        self._init_splited_vars(split_method)

Y
Yancey1989 已提交
272 273
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
274
        send_vars = []
275
        for orig_varname, splited_vars in self.grad_var_mapping.items():
Y
update  
Yancey1989 已提交
276
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
277 278 279 280 281 282 283 284 285
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
286
                index += 1
Y
Yancey1989 已提交
287 288 289 290
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
291
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
292
                index=index + 1,
Y
Yancey1989 已提交
293
                type="send_vars",
Y
update  
Yancey1989 已提交
294
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
295 296 297 298 299
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
300 301
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
302 303 304 305 306

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
307
                outputs={},
Y
Yancey1989 已提交
308 309
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
310 311
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
312
                })
Y
Yancey1989 已提交
313 314 315

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
316
        for _, var in enumerate(send_vars):
317
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
318
        ps_dispatcher.reset()
Y
Yancey1989 已提交
319 320
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
321
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
322 323 324
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
        # step4: Concat the parameters splits together after recv.
325
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
326 327 328 329 330 331 332 333
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
334 335 336 337 338
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
339

T
typhoonzero 已提交
340
        program.global_block().append_op(
Y
Yancey1989 已提交
341 342
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
343
            outputs={},
Q
qiaolongfei 已提交
344 345
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
346
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
347
            })
Y
Yancey1989 已提交
348

349
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
350 351
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
352
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
353
            program.global_block().append_op(
T
typhoonzero 已提交
354
                type="concat",
T
typhoonzero 已提交
355
                inputs={"X": splited_var},
T
typhoonzero 已提交
356
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
357
                attrs={"axis": 0})
T
typhoonzero 已提交
358

359
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
360 361
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
362
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
363

T
typhoonzero 已提交
364 365
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
366
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
367
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
368 369
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
370 371 372 373

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
374
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
375 376 377 378 379 380
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
381
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
382 383 384 385 386 387 388 389
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
390 391 392 393 394
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
395 396 397 398 399 400 401 402 403
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
404
            if self.sync_mode and self.trainer_num > 1:
405
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
406 407 408 409 410 411 412 413 414
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
415

Q
qiaolongfei 已提交
416
        # step 3
417
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
418 419 420
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
421
        # step 3.2
T
typhoonzero 已提交
422 423 424 425
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
426 427
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
428
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
429
        # step 3.3
T
typhoonzero 已提交
430
        # Iterate through the ops, and if an op and the optimize ops
431
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
432
        # append it into the sub program.
T
typhoonzero 已提交
433 434 435 436 437

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
438 439
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
440

441 442
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
443
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
444
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
445
            else:
446 447 448 449 450 451 452
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
453

454
        # append lr decay ops to the child block if exists
455 456
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
457 458
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
459
            for _, op in enumerate(lr_ops):
460
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
461

T
typhoonzero 已提交
462
        # append op to the current block
Q
qiaolongfei 已提交
463
        grad_to_block_id = []
Q
qiaolongfei 已提交
464
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
465
        for idx, opt_op in enumerate(opt_op_on_pserver):
466
            per_opt_block = pserver_program.create_block(pre_block_idx)
467 468 469 470 471 472 473 474
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
475 476
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
477
                if ufind.is_connected(op, opt_op) and op not in global_ops:
478 479
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
480 481

        # append global ops
482
        if global_ops:
Q
qiaolongfei 已提交
483 484 485
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
486
                __append_optimize_op__(glb_op, opt_state_block,
487
                                       grad_to_block_id, None)
T
typhoonzero 已提交
488

489 490 491 492
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
493
            table_opt_block = self._create_table_optimize_block(
494
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
495
            prefetch_block = self._create_prefetch_block(
496
                pserver_index, pserver_program, table_opt_block)
497 498 499 500 501 502 503 504 505

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
506 507 508 509 510 511
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
512
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
513
                "endpoint": endpoint,
514
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
515 516
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
517
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
518
            })
519

T
typhoonzero 已提交
520 521 522 523 524 525 526 527 528 529
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
530
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
544
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

577 578
    # ====================== private transpiler functions =====================

579
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
580 581
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
628 629
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
630
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
631 632
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
648
                    delete_ops(program.global_block(), [op])
649 650 651
                    # break for loop
                    break

Y
Yancey1989 已提交
652
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
653 654 655
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
656
        table_grad_name = grad_var_name(self.table_name)
657 658 659 660 661 662 663 664 665 666
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
667
                    outputs={"Out": self.trainer_side_table_grad_list})
668 669 670
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
671
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
672 673 674 675 676 677
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
698
            type="lookup_sparse_table",
699 700 701 702 703 704 705 706 707 708 709
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
710
                                     pre_block_idx, grad_to_block_id):
711 712
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
713 714 715 716 717 718 719 720
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
721 722 723
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
724
            self.origin_program.global_block().vars[grad_var_name(
725
                self.table_name)])
726 727 728 729 730 731

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
732
        table_opt_block = pserver_program.create_block(pre_block_idx)
733 734 735
        # only support sgd now
        assert table_opt_op.type == "sgd"

736 737 738
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
739
            pserver_side_table_grad_list = [
740 741 742 743 744 745 746 747 748
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

749
            # append sum op for pserver_side_table_grad_list
750 751
            table_opt_block.append_op(
                type="sum",
752
                inputs={"X": pserver_side_table_grad_list},
753
                outputs={"Out": [grad_var]})
754 755
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
756
            origin_grad_name = grad_var.name
757 758
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
759 760
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
761
                                 " grad_var:" + grad_var.name)
762 763
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

779 780 781
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

782 783
        return table_opt_block

T
typhoonzero 已提交
784 785 786 787 788
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
789
        Create vars for each split.
T
typhoonzero 已提交
790 791
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
792 793 794 795 796 797 798
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
799
        """
800 801

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
802
        block_map = dict()
803

T
typhoonzero 已提交
804
        var_mapping = dict()
T
typhoonzero 已提交
805 806 807 808 809
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
810 811 812
        # Do not remove this important debug message:
        print("block map: %s" % block_map)

T
typhoonzero 已提交
813
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
814
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
815
            if len(splited) == 1:
816
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
817 818 819 820 821 822 823 824
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
825
                continue
T
typhoonzero 已提交
826 827

            var_mapping[varname] = []
T
typhoonzero 已提交
828 829 830 831
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
832

T
typhoonzero 已提交
833
            for i, block in enumerate(splited):
T
typhoonzero 已提交
834
                size = block[1]
T
typhoonzero 已提交
835 836 837 838
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
839
                new_var_name = ""
840
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
841 842 843 844 845
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
846
                var = program.global_block().create_var(
T
typhoonzero 已提交
847 848
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
849
                    dtype=orig_var.dtype,
850
                    type=orig_var.type,
T
typhoonzero 已提交
851
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
852
                var_mapping[varname].append(var)
T
typhoonzero 已提交
853
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
854
        return var_mapping
T
done  
typhoonzero 已提交
855

856 857 858 859 860 861 862 863 864 865 866
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
867 868 869 870 871 872 873
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
874
            persistable=persistable)
T
done  
typhoonzero 已提交
875

Y
Yancey1989 已提交
876
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
901

T
typhoonzero 已提交
902 903 904 905
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
906
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

929 930
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
931
        orig_var_name = ""
932 933 934 935 936 937 938 939 940 941
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
942
        else:
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
        else:
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
994

995
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
996
                            grad_to_block_id, origin_program, merged_var):
997
        program = optimize_block.program
T
typhoonzero 已提交
998
        pserver_block = program.global_block()
T
typhoonzero 已提交
999
        new_inputs = dict()
T
typhoonzero 已提交
1000 1001
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1002
        for key in opt_op.input_names:
T
typhoonzero 已提交
1003 1004 1005 1006 1007 1008
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1009
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1010 1011 1012 1013
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1014
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1015
                    name=param_block.name,
T
typhoonzero 已提交
1016
                    persistable=True,
T
typhoonzero 已提交
1017 1018 1019
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1020
            elif key == "LearningRate":
1021
                # learning rate variable has already be created by non-optimize op,
1022
                # don't create it once again.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1034

T
typhoonzero 已提交
1035
        for key in opt_op.input_names:
1036 1037
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1038
                continue
1039
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1040 1041 1042 1043
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1044
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1045 1046 1047 1048 1049
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1050

1051
        # change output's ParamOut variable
1052 1053
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1054
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1055

1056
        optimize_block.append_op(
T
typhoonzero 已提交
1057 1058
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1059
            outputs=outputs,
T
typhoonzero 已提交
1060 1061
            attrs=opt_op.attrs)

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1072
        program = optimize_block.program
1073
        # Append the ops for parameters that do not need to be optimized/updated
1074 1075
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1076
        for key, varlist in inputs.iteritems():
1077 1078
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1079
            for var in varlist:
1080 1081 1082 1083 1084 1085 1086
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1087
                    program.global_block().create_var(
T
typhoonzero 已提交
1088 1089 1090 1091 1092
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1093 1094
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1095
        for key, varlist in outputs.iteritems():
1096 1097 1098
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1099 1100 1101 1102 1103 1104
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1105

1106
        optimize_block.append_op(
T
typhoonzero 已提交
1107
            type=opt_op.type,
T
typhoonzero 已提交
1108 1109
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1110 1111
            attrs=opt_op.attrs)

1112 1113 1114 1115
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1129 1130
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1131
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1132
        op2_output_names = op2.desc.output_arg_names()
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1161 1162
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1163 1164 1165 1166 1167 1168 1169
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1170
        if op.input("Param")[0] in param_names:
1171 1172 1173
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1174
                param = op.input("Param")[0]
T
typhoonzero 已提交
1175
                if same_or_split_var(n, param) and n != param:
1176 1177 1178
                    return True
            return False

T
typhoonzero 已提交
1179
    def _get_input_map_from_op(self, varmap, op):
1180
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1193
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1204 1205 1206 1207 1208 1209

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1210
            if self._is_optimizer_op(op):
1211 1212 1213 1214
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1215
        block = self.origin_program.global_block()
1216 1217 1218 1219 1220
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1221

1222 1223 1224 1225 1226
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1227
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1228 1229 1230 1231 1232 1233
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1234 1235
                    # we only need to append op for once
                    break
1236
        return lr_ops
Y
Yancey1989 已提交
1237 1238

    def _get_optimize_pass(self):
1239 1240 1241 1242 1243 1244
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1245 1246 1247
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1248
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1249
        for op in block.ops:
1250
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1251
                opt_ops.append(op)
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1263 1264
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1265 1266 1267
            else:
                pass
        return opt_ops, params_grads
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False