batch_operator.py 33.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

import cv2
import numpy as np
from .operator import register_op, BaseOperator, ResizeOp
from .op_helper import jaccard_overlap, gaussian2D
from scipy import ndimage

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
    'PadBatchOp',
    'BatchRandomResizeOp',
    'Gt2YoloTargetOp',
    'Gt2FCOSTargetOp',
    'Gt2TTFTargetOp',
    'Gt2Solov2TargetOp',
]


@register_op
class PadBatchOp(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
    """

    def __init__(self, pad_to_stride=0, pad_gt=False):
        super(PadBatchOp, self).__init__()
        self.pad_to_stride = pad_to_stride
        self.pad_gt = pad_gt

    def __call__(self, samples, context=None):
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

        max_shape = np.array([data['image'].shape for data in samples]).max(
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

        padding_batch = []
        for data in samples:
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm

        if self.pad_gt:
            gt_num = []
            if 'gt_poly' in data and data['gt_poly'] is not None and len(data[
                    'gt_poly']) > 0:
                pad_mask = True
            else:
                pad_mask = False

            if pad_mask:
                poly_num = []
                poly_part_num = []
                point_num = []
            for data in samples:
                gt_num.append(data['gt_bbox'].shape[0])
                if pad_mask:
                    poly_num.append(len(data['gt_poly']))
                    for poly in data['gt_poly']:
                        poly_part_num.append(int(len(poly)))
                        for p_p in poly:
                            point_num.append(int(len(p_p) / 2))
            gt_num_max = max(gt_num)

            for i, data in enumerate(samples):
118 119
                gt_box_data = -np.ones([gt_num_max, 4], dtype=np.float32)
                gt_class_data = -np.ones([gt_num_max], dtype=np.int32)
Q
qingqing01 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                is_crowd_data = np.ones([gt_num_max], dtype=np.int32)

                if pad_mask:
                    poly_num_max = max(poly_num)
                    poly_part_num_max = max(poly_part_num)
                    point_num_max = max(point_num)
                    gt_masks_data = -np.ones(
                        [poly_num_max, poly_part_num_max, point_num_max, 2],
                        dtype=np.float32)

                gt_num = data['gt_bbox'].shape[0]
                gt_box_data[0:gt_num, :] = data['gt_bbox']
                gt_class_data[0:gt_num] = np.squeeze(data['gt_class'])
                is_crowd_data[0:gt_num] = np.squeeze(data['is_crowd'])
                if pad_mask:
                    for j, poly in enumerate(data['gt_poly']):
                        for k, p_p in enumerate(poly):
                            pp_np = np.array(p_p).reshape(-1, 2)
                            gt_masks_data[j, k, :pp_np.shape[0], :] = pp_np
                    data['gt_poly'] = gt_masks_data
                data['gt_bbox'] = gt_box_data
                data['gt_class'] = gt_class_data
                data['is_crowd'] = is_crowd_data

        return samples


@register_op
class BatchRandomResizeOp(BaseOperator):
    """
    Resize image to target size randomly. random target_size and interpolation method
    Args:
        target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
        keep_ratio (bool): whether keep_raio or not, default true
        interp (int): the interpolation method
        random_size (bool): whether random select target size of image
        random_interp (bool): whether random select interpolation method
    """

    def __init__(self,
                 target_size,
                 keep_ratio,
                 interp=cv2.INTER_NEAREST,
                 random_size=True,
                 random_interp=False):
        super(BatchRandomResizeOp, self).__init__()
        self.keep_ratio = keep_ratio
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]
        self.interp = interp
        assert isinstance(target_size, (
            int, Sequence)), "target_size must be int, list or tuple"
        if random_size and not isinstance(target_size, list):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. Must be List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        self.random_size = random_size
        self.random_interp = random_interp

    def __call__(self, samples, context=None):
        if self.random_size:
            target_size = np.random.choice(self.target_size)
        else:
            target_size = self.target_size

        if self.random_interp:
            interp = np.random.choice(self.interps)
        else:
            interp = self.interp

        resizer = ResizeOp(
            target_size, keep_ratio=self.keep_ratio, interp=interp)
        return resizer(samples, context=context)


@register_op
class Gt2YoloTargetOp(BaseOperator):
    """
    Generate YOLOv3 targets by groud truth data, this operator is only used in
    fine grained YOLOv3 loss mode
    """

    def __init__(self,
                 anchors,
                 anchor_masks,
                 downsample_ratios,
                 num_classes=80,
                 iou_thresh=1.):
        super(Gt2YoloTargetOp, self).__init__()
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self.downsample_ratios = downsample_ratios
        self.num_classes = num_classes
        self.iou_thresh = iou_thresh

    def __call__(self, samples, context=None):
        assert len(self.anchor_masks) == len(self.downsample_ratios), \
            "anchor_masks', and 'downsample_ratios' should have same length."

        h, w = samples[0]['image'].shape[1:3]
        an_hw = np.array(self.anchors) / np.array([[w, h]])
        for sample in samples:
            # im, gt_bbox, gt_class, gt_score = sample
            im = sample['image']
            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']
232 233 234
            if 'gt_score' not in sample:
                sample['gt_score'] = np.ones(
                    (gt_bbox.shape[0], 1), dtype=np.float32)
Q
qingqing01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            gt_score = sample['gt_score']
            for i, (
                    mask, downsample_ratio
            ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
                grid_h = int(h / downsample_ratio)
                grid_w = int(w / downsample_ratio)
                target = np.zeros(
                    (len(mask), 6 + self.num_classes, grid_h, grid_w),
                    dtype=np.float32)
                for b in range(gt_bbox.shape[0]):
                    gx, gy, gw, gh = gt_bbox[b, :]
                    cls = gt_class[b]
                    score = gt_score[b]
                    if gw <= 0. or gh <= 0. or score <= 0.:
                        continue

                    # find best match anchor index
                    best_iou = 0.
                    best_idx = -1
                    for an_idx in range(an_hw.shape[0]):
                        iou = jaccard_overlap(
                            [0., 0., gw, gh],
                            [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
                        if iou > best_iou:
                            best_iou = iou
                            best_idx = an_idx

                    gi = int(gx * grid_w)
                    gj = int(gy * grid_h)

                    # gtbox should be regresed in this layes if best match 
                    # anchor index in anchor mask of this layer
                    if best_idx in mask:
                        best_n = mask.index(best_idx)

                        # x, y, w, h, scale
                        target[best_n, 0, gj, gi] = gx * grid_w - gi
                        target[best_n, 1, gj, gi] = gy * grid_h - gj
                        target[best_n, 2, gj, gi] = np.log(
                            gw * w / self.anchors[best_idx][0])
                        target[best_n, 3, gj, gi] = np.log(
                            gh * h / self.anchors[best_idx][1])
                        target[best_n, 4, gj, gi] = 2.0 - gw * gh

                        # objectness record gt_score
                        target[best_n, 5, gj, gi] = score

                        # classification
                        target[best_n, 6 + cls, gj, gi] = 1.

                    # For non-matched anchors, calculate the target if the iou 
                    # between anchor and gt is larger than iou_thresh
                    if self.iou_thresh < 1:
                        for idx, mask_i in enumerate(mask):
                            if mask_i == best_idx: continue
                            iou = jaccard_overlap(
                                [0., 0., gw, gh],
                                [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
W
wangxinxin08 已提交
293 294
                            if iou > self.iou_thresh and target[idx, 5, gj,
                                                                gi] == 0.:
Q
qingqing01 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                                # x, y, w, h, scale
                                target[idx, 0, gj, gi] = gx * grid_w - gi
                                target[idx, 1, gj, gi] = gy * grid_h - gj
                                target[idx, 2, gj, gi] = np.log(
                                    gw * w / self.anchors[mask_i][0])
                                target[idx, 3, gj, gi] = np.log(
                                    gh * h / self.anchors[mask_i][1])
                                target[idx, 4, gj, gi] = 2.0 - gw * gh

                                # objectness record gt_score
                                target[idx, 5, gj, gi] = score

                                # classification
                                target[idx, 6 + cls, gj, gi] = 1.
                sample['target{}'.format(i)] = target

            # remove useless gt_class and gt_score after target calculated
            sample.pop('gt_class')
            sample.pop('gt_score')

        return samples


@register_op
class Gt2FCOSTargetOp(BaseOperator):
    """
    Generate FCOS targets by groud truth data
    """

    def __init__(self,
                 object_sizes_boundary,
                 center_sampling_radius,
                 downsample_ratios,
                 norm_reg_targets=False):
        super(Gt2FCOSTargetOp, self).__init__()
        self.center_sampling_radius = center_sampling_radius
        self.downsample_ratios = downsample_ratios
        self.INF = np.inf
        self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
        object_sizes_of_interest = []
        for i in range(len(self.object_sizes_boundary) - 1):
            object_sizes_of_interest.append([
                self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
            ])
        self.object_sizes_of_interest = object_sizes_of_interest
        self.norm_reg_targets = norm_reg_targets

    def _compute_points(self, w, h):
        """
        compute the corresponding points in each feature map
        :param h: image height
        :param w: image width
        :return: points from all feature map
        """
        locations = []
        for stride in self.downsample_ratios:
            shift_x = np.arange(0, w, stride).astype(np.float32)
            shift_y = np.arange(0, h, stride).astype(np.float32)
            shift_x, shift_y = np.meshgrid(shift_x, shift_y)
            shift_x = shift_x.flatten()
            shift_y = shift_y.flatten()
            location = np.stack([shift_x, shift_y], axis=1) + stride // 2
            locations.append(location)
        num_points_each_level = [len(location) for location in locations]
        locations = np.concatenate(locations, axis=0)
        return locations, num_points_each_level

    def _convert_xywh2xyxy(self, gt_bbox, w, h):
        """
        convert the bounding box from style xywh to xyxy
        :param gt_bbox: bounding boxes normalized into [0, 1]
        :param w: image width
        :param h: image height
        :return: bounding boxes in xyxy style
        """
        bboxes = gt_bbox.copy()
        bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
        bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
        bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
        bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
        return bboxes

    def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
                                    num_points_each_level):
        """
        check if points is within the clipped boxes
        :param gt_bbox: bounding boxes
        :param xs: horizontal coordinate of points
        :param ys: vertical coordinate of points
        :return: the mask of points is within gt_box or not
        """
        bboxes = np.reshape(
            gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
        bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
        ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
        ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
        beg = 0
        clipped_box = bboxes.copy()
        for lvl, stride in enumerate(self.downsample_ratios):
            end = beg + num_points_each_level[lvl]
            stride_exp = self.center_sampling_radius * stride
            clipped_box[beg:end, :, 0] = np.maximum(
                bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 1] = np.maximum(
                bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 2] = np.minimum(
                bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
            clipped_box[beg:end, :, 3] = np.minimum(
                bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
            beg = end
        l_res = xs - clipped_box[:, :, 0]
        r_res = clipped_box[:, :, 2] - xs
        t_res = ys - clipped_box[:, :, 1]
        b_res = clipped_box[:, :, 3] - ys
        clipped_box_reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
        inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
        return inside_gt_box

    def __call__(self, samples, context=None):
        assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
            "object_sizes_of_interest', and 'downsample_ratios' should have same length."

        for sample in samples:
            # im, gt_bbox, gt_class, gt_score = sample
            im = sample['image']
            bboxes = sample['gt_bbox']
            gt_class = sample['gt_class']
            # calculate the locations
            h, w = im.shape[1:3]
            points, num_points_each_level = self._compute_points(w, h)
            object_scale_exp = []
            for i, num_pts in enumerate(num_points_each_level):
                object_scale_exp.append(
                    np.tile(
                        np.array([self.object_sizes_of_interest[i]]),
                        reps=[num_pts, 1]))
            object_scale_exp = np.concatenate(object_scale_exp, axis=0)

            gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
                bboxes[:, 3] - bboxes[:, 1])
            xs, ys = points[:, 0], points[:, 1]
            xs = np.reshape(xs, newshape=[xs.shape[0], 1])
            xs = np.tile(xs, reps=[1, bboxes.shape[0]])
            ys = np.reshape(ys, newshape=[ys.shape[0], 1])
            ys = np.tile(ys, reps=[1, bboxes.shape[0]])

            l_res = xs - bboxes[:, 0]
            r_res = bboxes[:, 2] - xs
            t_res = ys - bboxes[:, 1]
            b_res = bboxes[:, 3] - ys
            reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
            if self.center_sampling_radius > 0:
                is_inside_box = self._check_inside_boxes_limited(
                    bboxes, xs, ys, num_points_each_level)
            else:
                is_inside_box = np.min(reg_targets, axis=2) > 0
            # check if the targets is inside the corresponding level
            max_reg_targets = np.max(reg_targets, axis=2)
            lower_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 0], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            high_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 1], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            is_match_current_level = \
                (max_reg_targets > lower_bound) & \
                (max_reg_targets < high_bound)
            points2gtarea = np.tile(
                np.expand_dims(
                    gt_area, axis=0), reps=[xs.shape[0], 1])
            points2gtarea[is_inside_box == 0] = self.INF
            points2gtarea[is_match_current_level == 0] = self.INF
            points2min_area = points2gtarea.min(axis=1)
            points2min_area_ind = points2gtarea.argmin(axis=1)
            labels = gt_class[points2min_area_ind] + 1
            labels[points2min_area == self.INF] = 0
            reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
            ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
                                  reg_targets[:, [0, 2]].max(axis=1)) * \
                                  (reg_targets[:, [1, 3]].min(axis=1) / \
                                   reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
            ctn_targets = np.reshape(
                ctn_targets, newshape=[ctn_targets.shape[0], 1])
            ctn_targets[labels <= 0] = 0
            pos_ind = np.nonzero(labels != 0)
            reg_targets_pos = reg_targets[pos_ind[0], :]
            split_sections = []
            beg = 0
            for lvl in range(len(num_points_each_level)):
                end = beg + num_points_each_level[lvl]
                split_sections.append(end)
                beg = end
            labels_by_level = np.split(labels, split_sections, axis=0)
            reg_targets_by_level = np.split(reg_targets, split_sections, axis=0)
            ctn_targets_by_level = np.split(ctn_targets, split_sections, axis=0)
            for lvl in range(len(self.downsample_ratios)):
                grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
                grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
                if self.norm_reg_targets:
                    sample['reg_target{}'.format(lvl)] = \
                        np.reshape(
                            reg_targets_by_level[lvl] / \
                            self.downsample_ratios[lvl],
                            newshape=[grid_h, grid_w, 4])
                else:
                    sample['reg_target{}'.format(lvl)] = np.reshape(
                        reg_targets_by_level[lvl],
                        newshape=[grid_h, grid_w, 4])
                sample['labels{}'.format(lvl)] = np.reshape(
                    labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
                sample['centerness{}'.format(lvl)] = np.reshape(
                    ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
F
Feng Ni 已提交
509 510 511 512

            sample.pop('is_crowd')
            sample.pop('gt_class')
            sample.pop('gt_bbox')
Q
qingqing01 已提交
513 514 515 516 517
        return samples


@register_op
class Gt2TTFTargetOp(BaseOperator):
F
Feng Ni 已提交
518
    __shared__ = ['num_classes']
Q
qingqing01 已提交
519 520 521 522 523 524 525 526 527 528 529
    """
    Gt2TTFTarget
    Generate TTFNet targets by ground truth data
    
    Args:
        num_classes(int): the number of classes.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        alpha(float): the alpha parameter to generate gaussian target.
            0.54 by default.
    """

F
Feng Ni 已提交
530
    def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
Q
qingqing01 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
        super(Gt2TTFTargetOp, self).__init__()
        self.down_ratio = down_ratio
        self.num_classes = num_classes
        self.alpha = alpha

    def __call__(self, samples, context=None):
        output_size = samples[0]['image'].shape[1]
        feat_size = output_size // self.down_ratio
        for sample in samples:
            heatmap = np.zeros(
                (self.num_classes, feat_size, feat_size), dtype='float32')
            box_target = np.ones(
                (4, feat_size, feat_size), dtype='float32') * -1
            reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')

            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']

            bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
            bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
            area = bbox_w * bbox_h
            boxes_areas_log = np.log(area)
            boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
            boxes_area_topk_log = boxes_areas_log[boxes_ind]
            gt_bbox = gt_bbox[boxes_ind]
            gt_class = gt_class[boxes_ind]

            feat_gt_bbox = gt_bbox / self.down_ratio
            feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
            feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
                                feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])

            ct_inds = np.stack(
                [(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
                 (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
                axis=1) / self.down_ratio

            h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
            w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')

            for k in range(len(gt_bbox)):
                cls_id = gt_class[k]
                fake_heatmap = np.zeros((feat_size, feat_size), dtype='float32')
                self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
                                            h_radiuses_alpha[k],
                                            w_radiuses_alpha[k])

                heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
                box_target_inds = fake_heatmap > 0
                box_target[:, box_target_inds] = gt_bbox[k][:, None]

                local_heatmap = fake_heatmap[box_target_inds]
                ct_div = np.sum(local_heatmap)
                local_heatmap *= boxes_area_topk_log[k]
                reg_weight[0, box_target_inds] = local_heatmap / ct_div
            sample['ttf_heatmap'] = heatmap
            sample['ttf_box_target'] = box_target
            sample['ttf_reg_weight'] = reg_weight
        return samples

    def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
        h, w = 2 * h_radius + 1, 2 * w_radius + 1
        sigma_x = w / 6
        sigma_y = h / 6
        gaussian = gaussian2D((h, w), sigma_x, sigma_y)

        x, y = int(center[0]), int(center[1])

        height, width = heatmap.shape[0:2]

        left, right = min(x, w_radius), min(width - x, w_radius + 1)
        top, bottom = min(y, h_radius), min(height - y, h_radius + 1)

        masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
        masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
                                   left:w_radius + right]
        if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
            heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
                masked_heatmap, masked_gaussian)
        return heatmap


@register_op
class Gt2Solov2TargetOp(BaseOperator):
    """Assign mask target and labels in SOLOv2 network.
    Args:
        num_grids (list): The list of feature map grids size.
        scale_ranges (list): The list of mask boundary range.
        coord_sigma (float): The coefficient of coordinate area length.
        sampling_ratio (float): The ratio of down sampling.
    """

    def __init__(self,
                 num_grids=[40, 36, 24, 16, 12],
                 scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
                               [384, 2048]],
                 coord_sigma=0.2,
                 sampling_ratio=4.0):
        super(Gt2Solov2TargetOp, self).__init__()
        self.num_grids = num_grids
        self.scale_ranges = scale_ranges
        self.coord_sigma = coord_sigma
        self.sampling_ratio = sampling_ratio

    def _scale_size(self, im, scale):
        h, w = im.shape[:2]
        new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
        resized_img = cv2.resize(
            im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        return resized_img

    def __call__(self, samples, context=None):
        sample_id = 0
G
Guanghua Yu 已提交
644
        max_ins_num = [0] * len(self.num_grids)
Q
qingqing01 已提交
645 646
        for sample in samples:
            gt_bboxes_raw = sample['gt_bbox']
647
            gt_labels_raw = sample['gt_class'] + 1
Q
qingqing01 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
            im_c, im_h, im_w = sample['image'].shape[:]
            gt_masks_raw = sample['gt_segm'].astype(np.uint8)
            mask_feat_size = [
                int(im_h / self.sampling_ratio), int(im_w / self.sampling_ratio)
            ]
            gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
                               (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
            ins_ind_label_list = []
            idx = 0
            for (lower_bound, upper_bound), num_grid \
                    in zip(self.scale_ranges, self.num_grids):

                hit_indices = ((gt_areas >= lower_bound) &
                               (gt_areas <= upper_bound)).nonzero()[0]
                num_ins = len(hit_indices)

                ins_label = []
                grid_order = []
                cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
                ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)

                if num_ins == 0:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
G
Guanghua Yu 已提交
677
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
Q
qingqing01 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
                    idx += 1
                    continue
                gt_bboxes = gt_bboxes_raw[hit_indices]
                gt_labels = gt_labels_raw[hit_indices]
                gt_masks = gt_masks_raw[hit_indices, ...]

                half_ws = 0.5 * (
                    gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
                half_hs = 0.5 * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma

                for seg_mask, gt_label, half_h, half_w in zip(
                        gt_masks, gt_labels, half_hs, half_ws):
                    if seg_mask.sum() == 0:
                        continue
                    # mass center
                    upsampled_size = (mask_feat_size[0] * 4,
                                      mask_feat_size[1] * 4)
                    center_h, center_w = ndimage.measurements.center_of_mass(
                        seg_mask)
                    coord_w = int(
                        (center_w / upsampled_size[1]) // (1. / num_grid))
                    coord_h = int(
                        (center_h / upsampled_size[0]) // (1. / num_grid))

                    # left, top, right, down
                    top_box = max(0,
                                  int(((center_h - half_h) / upsampled_size[0])
                                      // (1. / num_grid)))
                    down_box = min(num_grid - 1,
                                   int(((center_h + half_h) / upsampled_size[0])
                                       // (1. / num_grid)))
                    left_box = max(0,
                                   int(((center_w - half_w) / upsampled_size[1])
                                       // (1. / num_grid)))
                    right_box = min(num_grid - 1,
                                    int(((center_w + half_w) /
                                         upsampled_size[1]) // (1. / num_grid)))

                    top = max(top_box, coord_h - 1)
                    down = min(down_box, coord_h + 1)
                    left = max(coord_w - 1, left_box)
                    right = min(right_box, coord_w + 1)

                    cate_label[top:(down + 1), left:(right + 1)] = gt_label
                    seg_mask = self._scale_size(
                        seg_mask, scale=1. / self.sampling_ratio)
                    for i in range(top, down + 1):
                        for j in range(left, right + 1):
                            label = int(i * num_grid + j)
                            cur_ins_label = np.zeros(
                                [mask_feat_size[0], mask_feat_size[1]],
                                dtype=np.uint8)
                            cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
                                1]] = seg_mask
                            ins_label.append(cur_ins_label)
                            ins_ind_label[label] = True
G
Guanghua Yu 已提交
735 736
                            grid_order.append(sample_id * num_grid * num_grid +
                                              label)
Q
qingqing01 已提交
737 738 739 740 741 742 743 744
                if ins_label == []:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
G
Guanghua Yu 已提交
745
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
Q
qingqing01 已提交
746 747 748 749 750
                else:
                    ins_label = np.stack(ins_label, axis=0)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
G
Guanghua Yu 已提交
751 752
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        grid_order, dtype=np.int32)
Q
qingqing01 已提交
753
                    assert len(grid_order) > 0
G
Guanghua Yu 已提交
754 755 756
                max_ins_num[idx] = max(
                    max_ins_num[idx],
                    sample['ins_label{}'.format(idx)].shape[0])
Q
qingqing01 已提交
757 758 759 760 761 762 763 764 765
                idx += 1
            ins_ind_labels = np.concatenate([
                ins_ind_labels_level_img
                for ins_ind_labels_level_img in ins_ind_label_list
            ])
            fg_num = np.sum(ins_ind_labels)
            sample['fg_num'] = fg_num
            sample_id += 1

G
Guanghua Yu 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
            sample.pop('is_crowd')
            sample.pop('gt_class')
            sample.pop('gt_bbox')
            sample.pop('gt_poly')
            sample.pop('gt_segm')

        # padding batch
        for data in samples:
            for idx in range(len(self.num_grids)):
                gt_ins_data = np.zeros(
                    [
                        max_ins_num[idx],
                        data['ins_label{}'.format(idx)].shape[1],
                        data['ins_label{}'.format(idx)].shape[2]
                    ],
                    dtype=np.uint8)
                gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
                    0], :, :] = data['ins_label{}'.format(idx)]
                gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
                gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
                    0]] = data['grid_order{}'.format(idx)]
                data['ins_label{}'.format(idx)] = gt_ins_data
                data['grid_order{}'.format(idx)] = gt_grid_order

Q
qingqing01 已提交
790
        return samples