fpn.py 3.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import numpy as np
import paddle
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Layer
from paddle.nn import Conv2D
from paddle.nn.initializer import XavierUniform
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable


@register
@serializable
class FPN(Layer):
    def __init__(self,
                 in_channels,
                 out_channel,
                 min_level=0,
                 max_level=4,
                 spatial_scale=[0.25, 0.125, 0.0625, 0.03125]):

        super(FPN, self).__init__()
G
Guanghua Yu 已提交
37 38 39
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
Q
qingqing01 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        self.lateral_convs = []
        self.fpn_convs = []
        fan = out_channel * 3 * 3

        for i in range(min_level, max_level):
            if i == 3:
                lateral_name = 'fpn_inner_res5_sum'
            else:
                lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
            in_c = in_channels[i]
            lateral = self.add_sublayer(
                lateral_name,
                Conv2D(
                    in_channels=in_c,
                    out_channels=out_channel,
                    kernel_size=1,
                    weight_attr=ParamAttr(
                        initializer=XavierUniform(fan_out=in_c)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            self.lateral_convs.append(lateral)

            fpn_name = 'fpn_res{}_sum'.format(i + 2)
            fpn_conv = self.add_sublayer(
                fpn_name,
                Conv2D(
                    in_channels=out_channel,
                    out_channels=out_channel,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(
                        initializer=XavierUniform(fan_out=fan)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            self.fpn_convs.append(fpn_conv)

    def forward(self, body_feats):
        laterals = []
        for lvl in range(self.min_level, self.max_level):
            laterals.append(self.lateral_convs[lvl](body_feats[lvl]))

        for i in range(self.min_level + 1, self.max_level):
            lvl = self.max_level + self.min_level - i
            upsample = F.interpolate(
                laterals[lvl],
                scale_factor=2.,
                mode='nearest', )
            laterals[lvl - 1] = laterals[lvl - 1] + upsample

        fpn_output = []
        for lvl in range(self.min_level, self.max_level):
            fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))

        extension = F.max_pool2d(fpn_output[-1], 1, stride=2)

        spatial_scale = self.spatial_scale + [self.spatial_scale[-1] * 0.5]
        fpn_output.append(extension)
        return fpn_output, spatial_scale