test_layer.py 9.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
L
Luo Tao 已提交
20
import paddle.v2.pooling as pooling
Q
qiaolongfei 已提交
21

L
Luo Tao 已提交
22
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
Q
qiaolongfei 已提交
23 24 25
label = layer.data(name='label', type=data_type.integer_value(10))
weight = layer.data(name='weight', type=data_type.dense_vector(10))
score = layer.data(name='score', type=data_type.dense_vector(1))
L
Luo Tao 已提交
26

Q
qiaolongfei 已提交
27 28 29 30 31
hidden = layer.fc(input=pixel,
                  size=100,
                  act=activation.Sigmoid(),
                  param_attr=attr.Param(name='hidden'))
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
L
Luo Tao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
conv = layer.img_conv(
    input=pixel,
    filter_size=1,
    filter_size_y=1,
    num_channels=8,
    num_filters=16,
    act=activation.Linear())


class ImageLayerTest(unittest.TestCase):
    def test_conv_layer(self):
        conv_shift = layer.conv_shift(a=pixel, b=score)
        print layer.parse_network(conv, conv_shift)

    def test_pooling_layer(self):
        maxpool = layer.img_pool(
            input=conv,
            pool_size=2,
            num_channels=16,
            padding=1,
            pool_type=pooling.Max())
        spp = layer.spp(input=conv,
                        pyramid_height=2,
                        num_channels=16,
                        pool_type=pooling.Max())
        maxout = layer.maxout(input=conv, num_channels=16, groups=4)
        print layer.parse_network(maxpool, spp, maxout)

    def test_norm_layer(self):
        norm1 = layer.img_cmrnorm(input=conv, size=5)
        norm2 = layer.batch_norm(input=conv)
        norm3 = layer.sum_to_one_norm(input=conv)
        print layer.parse_network(norm1, norm2, norm3)


class AggregateLayerTest(unittest.TestCase):
    def test_aggregate_layer(self):
        pool = layer.pool(
            input=pixel,
            pooling_type=pooling.Avg(),
            agg_level=layer.AggregateLevel.EACH_SEQUENCE)
        last_seq = layer.last_seq(input=pixel)
        first_seq = layer.first_seq(input=pixel)
        concat = layer.concat(input=[last_seq, first_seq])
        seq_concat = layer.seq_concat(a=last_seq, b=first_seq)
        print layer.parse_network(pool, last_seq, first_seq, concat, seq_concat)


class MathLayerTest(unittest.TestCase):
    def test_math_layer(self):
        addto = layer.addto(input=[pixel, pixel])
        linear_comb = layer.linear_comb(weights=weight, vectors=hidden, size=10)
        interpolation = layer.interpolation(
            input=[hidden, hidden], weight=score)
        bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4)
        power = layer.power(input=pixel, weight=score)
        scaling = layer.scaling(input=pixel, weight=score)
        slope = layer.slope_intercept(input=pixel)
        tensor = layer.tensor(a=pixel, b=pixel, size=1000)
        cos_sim = layer.cos_sim(a=pixel, b=pixel)
        trans = layer.trans(input=tensor)
        print layer.parse_network(addto, linear_comb, interpolation, power,
                                  scaling, slope, tensor, cos_sim, trans)


class ReshapeLayerTest(unittest.TestCase):
    def test_reshape_layer(self):
        block_expand = layer.block_expand(
            input=conv, num_channels=4, stride_x=1, block_x=1)
        expand = layer.expand(
            input=weight,
            expand_as=pixel,
            expand_level=layer.ExpandLevel.FROM_TIMESTEP)
        repeat = layer.repeat(input=pixel, num_repeats=4)
        reshape = layer.seq_reshape(input=pixel, reshape_size=4)
        rotate = layer.rotate(input=pixel, height=16, width=49)
        print layer.parse_network(block_expand, expand, repeat, reshape, rotate)


class RecurrentLayerTest(unittest.TestCase):
    def test_recurrent_layer(self):
        word = layer.data(name='word', type=data_type.integer_value(12))
        recurrent = layer.recurrent(input=word)
        lstm = layer.lstmemory(input=word)
        gru = layer.grumemory(input=word)
        print layer.parse_network(recurrent, lstm, gru)
Q
qiaolongfei 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137


class CostLayerTest(unittest.TestCase):
    def test_cost_layer(self):
        cost1 = layer.classification_cost(input=inference, label=label)
        cost2 = layer.classification_cost(
            input=inference, label=label, weight=weight)
        cost3 = layer.cross_entropy_cost(input=inference, label=label)
        cost4 = layer.cross_entropy_with_selfnorm_cost(
            input=inference, label=label)
        cost5 = layer.regression_cost(input=inference, label=label)
        cost6 = layer.regression_cost(
            input=inference, label=label, weight=weight)
        cost7 = layer.multi_binary_label_cross_entropy_cost(
            input=inference, label=label)
        cost8 = layer.rank_cost(left=score, right=score, label=score)
        cost9 = layer.lambda_cost(input=inference, score=score)
        cost10 = layer.sum_cost(input=inference)
        cost11 = layer.huber_cost(input=score, label=label)

138 139 140 141 142
        print layer.parse_network(cost1, cost2)
        print layer.parse_network(cost3, cost4)
        print layer.parse_network(cost5, cost6)
        print layer.parse_network(cost7, cost8, cost9, cost10, cost11)

L
Luo Tao 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        crf = layer.crf(input=inference, label=label)
        crf_decoding = layer.crf_decoding(input=inference, size=3)
        ctc = layer.ctc(input=inference, label=label)
        warp_ctc = layer.warp_ctc(input=pixel, label=label)
        nce = layer.nce(input=inference, label=label, num_classes=3)
        hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3)

        print layer.parse_network(crf, crf_decoding, ctc, warp_ctc, nce,
                                  hsigmoid)


class OtherLayerTest(unittest.TestCase):
    def test_sampling_layer(self):
        maxid = layer.max_id(input=inference)
        sampling_id = layer.sampling_id(input=inference)
        eos = layer.eos(input=maxid, eos_id=5)
        print layer.parse_network(maxid, sampling_id, eos)

    def test_slicing_joining_layer(self):
        pad = layer.pad(input=conv, pad_c=[2, 3], pad_h=[1, 2], pad_w=[3, 1])
        print layer.parse_network(pad)
Q
qiaolongfei 已提交
164 165


L
Luo Tao 已提交
166
class ProjOpTest(unittest.TestCase):
D
dangqingqing 已提交
167 168 169 170
    def test_projection(self):
        input = layer.data(name='data', type=data_type.dense_vector(784))
        word = layer.data(
            name='word', type=data_type.integer_value_sequence(10000))
D
dangqingqing 已提交
171 172
        fc0 = layer.fc(input=input, size=100, act=activation.Sigmoid())
        fc1 = layer.fc(input=input, size=200, act=activation.Sigmoid())
D
dangqingqing 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        mixed0 = layer.mixed(
            size=256,
            input=[
                layer.full_matrix_projection(input=fc0),
                layer.full_matrix_projection(input=fc1)
            ])
        with layer.mixed(size=200) as mixed1:
            mixed1 += layer.full_matrix_projection(input=fc0)
            mixed1 += layer.identity_projection(input=fc1)

        table = layer.table_projection(input=word)
        emb0 = layer.mixed(size=512, input=table)
        with layer.mixed(size=512) as emb1:
            emb1 += table

        scale = layer.scaling_projection(input=fc0)
        scale0 = layer.mixed(size=100, input=scale)
        with layer.mixed(size=100) as scale1:
            scale1 += scale

        dotmul = layer.dotmul_projection(input=fc0)
        dotmul0 = layer.mixed(size=100, input=dotmul)
        with layer.mixed(size=100) as dotmul1:
            dotmul1 += dotmul

        context = layer.context_projection(input=fc0, context_len=5)
        context0 = layer.mixed(size=100, input=context)
        with layer.mixed(size=100) as context1:
            context1 += context

        conv = layer.conv_projection(
            input=input,
            filter_size=1,
            num_channels=1,
            num_filters=128,
            stride=1,
            padding=0)
        conv0 = layer.mixed(input=conv, bias_attr=True)
        with layer.mixed(bias_attr=True) as conv1:
            conv1 += conv

        print layer.parse_network(mixed0)
        print layer.parse_network(mixed1)
        print layer.parse_network(emb0)
        print layer.parse_network(emb1)
        print layer.parse_network(scale0)
        print layer.parse_network(scale1)
        print layer.parse_network(dotmul0)
        print layer.parse_network(dotmul1)
        print layer.parse_network(conv0)
        print layer.parse_network(conv1)

    def test_operator(self):
        ipt0 = layer.data(name='data', type=data_type.dense_vector(784))
        ipt1 = layer.data(name='word', type=data_type.dense_vector(128))
D
dangqingqing 已提交
228 229
        fc0 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
        fc1 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
D
dangqingqing 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

        dotmul_op = layer.dotmul_operator(a=fc0, b=fc1)
        dotmul0 = layer.mixed(input=dotmul_op)
        with layer.mixed() as dotmul1:
            dotmul1 += dotmul_op

        conv = layer.conv_operator(
            img=ipt0,
            filter=ipt1,
            filter_size=1,
            num_channels=1,
            num_filters=128,
            stride=1,
            padding=0)
        conv0 = layer.mixed(input=conv)
        with layer.mixed() as conv1:
            conv1 += conv

        print layer.parse_network(dotmul0)
        print layer.parse_network(dotmul1)
        print layer.parse_network(conv0)
        print layer.parse_network(conv1)

253

Q
qiaolongfei 已提交
254 255
if __name__ == '__main__':
    unittest.main()