mot_metrics.py 10.4 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
19
import copy
G
George Ni 已提交
20
import numpy as np
G
George Ni 已提交
21
import paddle
G
George Ni 已提交
22
import paddle.nn.functional as F
G
George Ni 已提交
23 24
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from .map_utils import ap_per_class
G
George Ni 已提交
25 26 27 28 29
from .metrics import Metric

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

G
George Ni 已提交
30
__all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric']
G
George Ni 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def read_mot_results(filename, is_gt=False, is_ignore=False):
    valid_labels = {1}
    ignore_labels = {2, 7, 8, 12}
    results_dict = dict()
    if os.path.isfile(filename):
        with open(filename, 'r') as f:
            for line in f.readlines():
                linelist = line.split(',')
                if len(linelist) < 7:
                    continue
                fid = int(linelist[0])
                if fid < 1:
                    continue
                results_dict.setdefault(fid, list())

                box_size = float(linelist[4]) * float(linelist[5])

                if is_gt:
N
nemonameless 已提交
51
                    if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
G
George Ni 已提交
52 53 54 55 56 57
                        label = int(float(linelist[7]))
                        mark = int(float(linelist[6]))
                        if mark == 0 or label not in valid_labels:
                            continue
                    score = 1
                elif is_ignore:
N
nemonameless 已提交
58
                    if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
G
George Ni 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                        label = int(float(linelist[7]))
                        vis_ratio = float(linelist[8])
                        if label not in ignore_labels and vis_ratio >= 0:
                            continue
                    else:
                        continue
                    score = 1
                else:
                    score = float(linelist[6])

                tlwh = tuple(map(float, linelist[2:6]))
                target_id = int(linelist[1])

                results_dict[fid].append((tlwh, target_id, score))
    return results_dict


"""
labels={'ped', ...			    % 1
        'person_on_vhcl', ...	% 2
        'car', ...				% 3
        'bicycle', ...			% 4
        'mbike', ...			% 5
        'non_mot_vhcl', ...		% 6
        'static_person', ...	% 7
        'distractor', ...		% 8
        'occluder', ...			% 9
        'occluder_on_grnd', ...	% 10
        'occluder_full', ...	% 11
        'reflection', ...		% 12
        'crowd' ...			    % 13
};
"""


def unzip_objs(objs):
    if len(objs) > 0:
        tlwhs, ids, scores = zip(*objs)
    else:
        tlwhs, ids, scores = [], [], []
    tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
    return tlwhs, ids, scores


class MOTEvaluator(object):
    def __init__(self, data_root, seq_name, data_type):
        self.data_root = data_root
        self.seq_name = seq_name
        self.data_type = data_type

        self.load_annotations()
        self.reset_accumulator()

    def load_annotations(self):
        assert self.data_type == 'mot'
        gt_filename = os.path.join(self.data_root, self.seq_name, 'gt',
                                   'gt.txt')
        self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True)
        self.gt_ignore_frame_dict = read_mot_results(
            gt_filename, is_ignore=True)

    def reset_accumulator(self):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        self.acc = mm.MOTAccumulator(auto_id=True)

    def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        # results
        trk_tlwhs = np.copy(trk_tlwhs)
        trk_ids = np.copy(trk_ids)

        # gts
        gt_objs = self.gt_frame_dict.get(frame_id, [])
        gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]

        # ignore boxes
        ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
        ignore_tlwhs = unzip_objs(ignore_objs)[0]

        # remove ignored results
        keep = np.ones(len(trk_tlwhs), dtype=bool)
        iou_distance = mm.distances.iou_matrix(
            ignore_tlwhs, trk_tlwhs, max_iou=0.5)
        if len(iou_distance) > 0:
            match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
            match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
            match_ious = iou_distance[match_is, match_js]

            match_js = np.asarray(match_js, dtype=int)
            match_js = match_js[np.logical_not(np.isnan(match_ious))]
            keep[match_js] = False
            trk_tlwhs = trk_tlwhs[keep]
            trk_ids = trk_ids[keep]

        # get distance matrix
        iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)

        # acc
        self.acc.update(gt_ids, trk_ids, iou_distance)

        if rtn_events and iou_distance.size > 0 and hasattr(self.acc,
                                                            'last_mot_events'):
            events = self.acc.last_mot_events  # only supported by https://github.com/longcw/py-motmetrics
        else:
            events = None
        return events

    def eval_file(self, filename):
        self.reset_accumulator()

        result_frame_dict = read_mot_results(filename, is_gt=False)
        frames = sorted(list(set(result_frame_dict.keys())))
        for frame_id in frames:
            trk_objs = result_frame_dict.get(frame_id, [])
            trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
            self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)

        return self.acc

    @staticmethod
    def get_summary(accs,
                    names,
                    metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1',
                             'precision', 'recall')):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        names = copy.deepcopy(names)
        if metrics is None:
            metrics = mm.metrics.motchallenge_metrics
        metrics = copy.deepcopy(metrics)

        mh = mm.metrics.create()
        summary = mh.compute_many(
            accs, metrics=metrics, names=names, generate_overall=True)
        return summary

    @staticmethod
    def save_summary(summary, filename):
        import pandas as pd
        writer = pd.ExcelWriter(filename)
        summary.to_excel(writer)
        writer.save()
G
George Ni 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240


class MOTMetric(Metric):
    def __init__(self, save_summary=False):
        self.save_summary = save_summary
        self.MOTEvaluator = MOTEvaluator
        self.result_root = None
        self.reset()

    def reset(self):
        self.accs = []
        self.seqs = []

    def update(self, data_root, seq, data_type, result_root, result_filename):
        evaluator = self.MOTEvaluator(data_root, seq, data_type)
        self.accs.append(evaluator.eval_file(result_filename))
        self.seqs.append(seq)
        self.result_root = result_root

    def accumulate(self):
        import motmetrics as mm
        import openpyxl
        metrics = mm.metrics.motchallenge_metrics
        mh = mm.metrics.create()
        summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics)
        self.strsummary = mm.io.render_summary(
            summary,
            formatters=mh.formatters,
            namemap=mm.io.motchallenge_metric_names)
        if self.save_summary:
            self.MOTEvaluator.save_summary(
                summary, os.path.join(self.result_root, 'summary.xlsx'))

    def log(self):
        print(self.strsummary)

    def get_results(self):
        return self.strsummary
G
George Ni 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304


class JDEDetMetric(Metric):
    # Note this detection AP metric is different from COCOMetric or VOCMetric,
    # and the bboxes coordinates are not scaled to the original image
    def __init__(self, overlap_thresh=0.5):
        self.overlap_thresh = overlap_thresh
        self.reset()

    def reset(self):
        self.AP_accum = np.zeros(1)
        self.AP_accum_count = np.zeros(1)

    def update(self, inputs, outputs):
        bboxes = outputs['bbox'][:, 2:].numpy()
        scores = outputs['bbox'][:, 1].numpy()
        labels = outputs['bbox'][:, 0].numpy()
        bbox_lengths = outputs['bbox_num'].numpy()
        if bboxes.shape[0] == 1 and bboxes.sum() == 0.0:
            return

        gt_boxes = inputs['gt_bbox'].numpy()[0]
        gt_labels = inputs['gt_class'].numpy()[0]
        if gt_labels.shape[0] == 0:
            return

        correct = []
        detected = []
        for i in range(bboxes.shape[0]):
            obj_pred = 0
            pred_bbox = bboxes[i].reshape(1, 4)
            # Compute iou with target boxes
            iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0]
            # Extract index of largest overlap
            best_i = np.argmax(iou)
            # If overlap exceeds threshold and classification is correct mark as correct
            if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[
                    best_i] and best_i not in detected:
                correct.append(1)
                detected.append(best_i)
            else:
                correct.append(0)

        # Compute Average Precision (AP) per class
        target_cls = list(gt_labels.T[0])
        AP, AP_class, R, P = ap_per_class(
            tp=correct,
            conf=scores,
            pred_cls=np.zeros_like(scores),
            target_cls=target_cls)
        self.AP_accum_count += np.bincount(AP_class, minlength=1)
        self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP)

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16)

    def log(self):
        map_stat = 100. * self.map_stat
        logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh,
                                                   map_stat))

    def get_results(self):
        return self.map_stat