seqToseq_net.py 7.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# edit-mode: -*- python -*-

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
from paddle.trainer_config_helpers import *


def seq_to_seq_data(data_dir,
                    is_generating,
                    dict_size=30000,
                    train_list='train.list',
                    test_list='test.list',
                    gen_list='gen.list',
                    gen_result='gen_result'):
    """
    Predefined seqToseq train data provider for application
    is_generating: whether this config is used for generating
    dict_size: word count of dictionary
    train_list: a text file containing a list of training data
    test_list: a text file containing a list of testing data
    gen_list: a text file containing a list of generating data
    gen_result: a text file containing generating result
    """
    src_lang_dict = os.path.join(data_dir, 'src.dict')
    trg_lang_dict = os.path.join(data_dir, 'trg.dict')

    if is_generating:
        train_list = None
        test_list = os.path.join(data_dir, gen_list)
    else:
        train_list = os.path.join(data_dir, train_list)
46
        test_list = os.path.join(data_dir, test_list)
Z
zhangjinchao01 已提交
47

48 49 50 51 52
    define_py_data_sources2(
        train_list,
        test_list,
        module="dataprovider",
        obj="process",
L
Luo Tao 已提交
53 54 55 56 57
        args={
            "src_dict_path": src_lang_dict,
            "trg_dict_path": trg_lang_dict,
            "is_generating": is_generating
        })
Z
zhangjinchao01 已提交
58

59 60 61 62 63
    return {
        "src_dict_path": src_lang_dict,
        "trg_dict_path": trg_lang_dict,
        "gen_result": gen_result
    }
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91


def gru_encoder_decoder(data_conf,
                        is_generating,
                        word_vector_dim=512,
                        encoder_size=512,
                        decoder_size=512,
                        beam_size=3,
                        max_length=250):
    """
    A wrapper for an attention version of GRU Encoder-Decoder network
    is_generating: whether this config is used for generating
    encoder_size: dimension of hidden unit in GRU Encoder network
    decoder_size: dimension of hidden unit in GRU Decoder network
    word_vector_dim: dimension of word vector
    beam_size: expand width in beam search
    max_length: a stop condition of sequence generation
    """
    for k, v in data_conf.iteritems():
        globals()[k] = v
    source_dict_dim = len(open(src_dict_path, "r").readlines())
    target_dict_dim = len(open(trg_dict_path, "r").readlines())
    gen_trans_file = gen_result

    src_word_id = data_layer(name='source_language_word', size=source_dict_dim)
    src_embedding = embedding_layer(
        input=src_word_id,
        size=word_vector_dim,
W
wangjiang03 已提交
92 93
        param_attr=ParamAttr(name='_source_language_embedding'))
    src_forward = simple_gru(input=src_embedding, size=encoder_size)
94 95
    src_backward = simple_gru(
        input=src_embedding, size=encoder_size, reverse=True)
Z
zhangjinchao01 已提交
96 97 98
    encoded_vector = concat_layer(input=[src_forward, src_backward])

    with mixed_layer(size=decoder_size) as encoded_proj:
99
        encoded_proj += full_matrix_projection(input=encoded_vector)
Z
zhangjinchao01 已提交
100 101

    backward_first = first_seq(input=src_backward)
102 103 104
    with mixed_layer(
            size=decoder_size,
            act=TanhActivation(), ) as decoder_boot:
105
        decoder_boot += full_matrix_projection(input=backward_first)
Z
zhangjinchao01 已提交
106 107

    def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
108 109
        decoder_mem = memory(
            name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
Z
zhangjinchao01 已提交
110

111 112 113 114
        context = simple_attention(
            encoded_sequence=enc_vec,
            encoded_proj=enc_proj,
            decoder_state=decoder_mem, )
Z
zhangjinchao01 已提交
115 116

        with mixed_layer(size=decoder_size * 3) as decoder_inputs:
117 118
            decoder_inputs += full_matrix_projection(input=context)
            decoder_inputs += full_matrix_projection(input=current_word)
Z
zhangjinchao01 已提交
119

120 121 122 123 124
        gru_step = gru_step_layer(
            name='gru_decoder',
            input=decoder_inputs,
            output_mem=decoder_mem,
            size=decoder_size)
Z
zhangjinchao01 已提交
125

126 127 128
        with mixed_layer(
                size=target_dict_dim, bias_attr=True,
                act=SoftmaxActivation()) as out:
Z
zhangjinchao01 已提交
129 130 131 132
            out += full_matrix_projection(input=gru_step)
        return out

    decoder_group_name = "decoder_group"
133 134 135 136 137
    group_inputs = [
        StaticInput(
            input=encoded_vector, is_seq=True), StaticInput(
                input=encoded_proj, is_seq=True)
    ]
138

Z
zhangjinchao01 已提交
139 140
    if not is_generating:
        trg_embedding = embedding_layer(
141 142
            input=data_layer(
                name='target_language_word', size=target_dict_dim),
Z
zhangjinchao01 已提交
143 144
            size=word_vector_dim,
            param_attr=ParamAttr(name='_target_language_embedding'))
145
        group_inputs.append(trg_embedding)
Z
zhangjinchao01 已提交
146 147 148 149 150 151

        # For decoder equipped with attention mechanism, in training,
        # target embeding (the groudtruth) is the data input,
        # while encoded source sequence is accessed to as an unbounded memory.
        # Here, the StaticInput defines a read-only memory
        # for the recurrent_group.
152 153 154 155
        decoder = recurrent_group(
            name=decoder_group_name,
            step=gru_decoder_with_attention,
            input=group_inputs)
Z
zhangjinchao01 已提交
156

157
        lbl = data_layer(name='target_language_next_word', size=target_dict_dim)
158
        cost = classification_cost(input=decoder, label=lbl)
Z
zhangjinchao01 已提交
159 160
        outputs(cost)
    else:
161
        # In generation, the decoder predicts a next target word based on
Z
zhangjinchao01 已提交
162
        # the encoded source sequence and the last generated target word.
163

Z
zhangjinchao01 已提交
164
        # The encoded source sequence (encoder's output) must be specified by
165 166 167 168 169
        # StaticInput, which is a read-only memory.
        # Embedding of the last generated word is automatically gotten by
        # GeneratedInputs, which is initialized by a start mark, such as <s>,
        # and must be included in generation.

Z
zhangjinchao01 已提交
170 171 172 173
        trg_embedding = GeneratedInput(
            size=target_dict_dim,
            embedding_name='_target_language_embedding',
            embedding_size=word_vector_dim)
174 175
        group_inputs.append(trg_embedding)

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        beam_gen = beam_search(
            name=decoder_group_name,
            step=gru_decoder_with_attention,
            input=group_inputs,
            bos_id=0,
            eos_id=1,
            beam_size=beam_size,
            max_length=max_length)

        seqtext_printer_evaluator(
            input=beam_gen,
            id_input=data_layer(
                name="sent_id", size=1),
            dict_file=trg_dict_path,
            result_file=gen_trans_file)
Z
zhangjinchao01 已提交
191
        outputs(beam_gen)