operator.h 13.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

Q
Qiao Longfei 已提交
79
/**
X
Xin Pan 已提交
80
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
81 82 83 84 85 86
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
87 88
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
89

Q
Qiao Longfei 已提交
90 91
  virtual ~OperatorBase() {}

92
  /// Executor will call this interface function to Run an op.
93 94
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
95

T
typhoonzero 已提交
96 97 98
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

99 100 101
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
102

103 104
  virtual bool SupportGPU() const { return false; }

105 106
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
107
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
108 109
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
110 111
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
112 113 114
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
115

Y
Yu Yang 已提交
116 117
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
118

119
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
120
  //! Get a input with argument's name described in `op_proto`
121
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
122
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
123
  const std::vector<std::string>& Inputs(const std::string& name) const;
124
  //! Get all inputs variable names
Q
qijun 已提交
125 126
  std::vector<std::string> InputVars() const;

127
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
128
  //! Get a output with argument's name described in `op_proto`
129
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
130 131
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
132
  const std::vector<std::string>& Outputs(const std::string& name) const;
133
  //! Get all outputs variable names
Y
Yu Yang 已提交
134
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
135

136 137
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }

Q
qiaolongfei 已提交
138
 protected:
Q
Qiao Longfei 已提交
139
  std::string type_;
D
dongzhihong 已提交
140
  // NOTE: in case of OpGrad, inputs_ contains:
141
  // I (Inputs)
D
dongzhihong 已提交
142 143
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
144
  VariableNameMap inputs_;
Y
Yu Yang 已提交
145

D
dongzhihong 已提交
146 147
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
148
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
149
  AttributeMap attrs_;
150 151
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
152 153 154 155

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
156 157
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
158 159
};

160
class ExecutionContext {
Y
Yan Chunwei 已提交
161
 public:
162 163 164
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
165

Q
qiaolongfei 已提交
166 167 168 169
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
170
  template <typename T>
Y
Yu Yang 已提交
171 172
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
173 174
  }

175
  bool HasInput(const std::string& name) const;
176

177
  bool HasOutput(const std::string& name) const;
178

Y
Yu Yang 已提交
179
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
180
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
181 182
  }

Y
Yu Yang 已提交
183
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
184
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
185 186
  }

187
  const Variable* InputVar(const std::string& name) const {
188
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
189
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
190 191
  }

192
  Variable* OutputVar(const std::string& name) const {
193
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
194
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
195 196
  }

197 198
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
199 200
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
201
    res.reserve(names.size());
202 203
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
204 205
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
206
                   });
Y
Yan Chunwei 已提交
207 208 209
    return res;
  }

210
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
211
    auto names = op_.Outputs(name);
212
    std::vector<Variable*> res;
213
    res.reserve(names.size());
214 215
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
216 217
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
218
                   });
Y
Yan Chunwei 已提交
219 220 221
    return res;
  }

222 223
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
224
    auto* var = InputVar(name);
225
    return var == nullptr ? nullptr : &var->Get<T>();
226 227 228 229
  }

  template <typename T>
  T* Output(const std::string& name) const {
230
    auto var = OutputVar(name);
231
    return var == nullptr ? nullptr : var->GetMutable<T>();
232 233 234 235 236 237 238 239
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
240
                   [&](const std::string& sub_name) -> const T* {
241
                     auto var = scope_.FindVar(sub_name);
242
                     return var == nullptr ? nullptr : &var->Get<T>();
243 244 245 246 247
                   });
    return res;
  }

  template <typename T>
248
  std::vector<T*> MultiOutput(const std::string& name) const {
249
    auto names = op_.Outputs(name);
250
    std::vector<T*> res;
251 252
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
253
                   [&](const std::string& sub_name) -> T* {
254
                     auto var = scope_.FindVar(sub_name);
255
                     return var == nullptr ? nullptr : var->GetMutable<T>();
256 257 258 259
                   });
    return res;
  }

260
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
261

Q
QI JUN 已提交
262 263 264 265 266
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

267
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
268
    return device_context_;
Q
qijun 已提交
269
  }
Q
qijun 已提交
270

Q
QI JUN 已提交
271 272 273 274 275 276 277 278
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
279
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
280 281 282
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
283

D
dzhwinter 已提交
284
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
285 286 287 288
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

289
 private:
290 291
  const OperatorBase& op_;
  const Scope& scope_;
292
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
293 294
};

295 296 297 298 299 300 301 302 303 304 305 306 307 308
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
309
class OpKernelBase {
Q
qijun 已提交
310
 public:
Q
qijun 已提交
311
  /**
312
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
313 314
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
315
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
316 317
   */

318
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
319

Y
Yu Yang 已提交
320 321 322 323 324 325 326
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
327 328
};

Y
Yu Yang 已提交
329 330
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
331
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
332
  using OpKernelMap =
Y
yuyang18 已提交
333
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
334

Y
Yu Yang 已提交
335 336
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
337 338
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
339 340 341 342
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
343
  }
Y
Yan Chunwei 已提交
344

345
  bool SupportGPU() const override {
Y
Yu Yang 已提交
346 347 348 349 350
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
351 352
  }

353 354 355
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
356

Q
qiaolongfei 已提交
357
 protected:
358 359 360 361
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
362 363

 private:
364
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
365
  // same.
366
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
367
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
382 383
};

Y
Yu Yang 已提交
384 385
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
386 387
}  // namespace framework
}  // namespace paddle