test_conv2dtranspose_op.py 3.0 KB
Newer Older
Z
deconv  
zchen0211 已提交
1 2 3 4 5
import unittest
import numpy as np
from op_test import OpTest


Z
zchen0211 已提交
6
def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param):
Z
deconv  
zchen0211 已提交
7 8 9 10 11 12
    # [2, 3, 5, 5]
    in_n, in_c, in_h, in_w = input_.shape
    # [3, 6, 3, 3]
    f_c, out_c, f_h, f_w = filter_.shape
    assert in_c == f_c

Z
zchen0211 已提交
13
    stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad']
Z
deconv  
zchen0211 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    out_h = (in_h - 1) * stride[0] + f_h
    out_w = (in_w - 1) * stride[1] + f_w

    out = np.zeros((in_n, out_c, out_h, out_w))

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
                input_masked = input_[n, :, i, j]  # (c)
                input_masked = np.reshape(input_masked, (in_c, 1, 1))
                input_masked = np.tile(input_masked, (1, f_h, f_w))

                for k in range(out_c):
                    tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
                    i1, i2 = i * stride[0], i * stride[0] + f_h
                    j1, j2 = j * stride[0], j * stride[0] + f_w
                    out[n, k, i1:i2, j1:j2] += tmp_out

    return out


Z
zchen0211 已提交
35
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
36
    def setUp(self):
Z
zchen0211 已提交
37
        # init as conv transpose
Z
deconv  
zchen0211 已提交
38 39 40 41 42
        self.init_op_type()

        # [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7]
        self.init_test_case()

Z
zchen0211 已提交
43
        conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad}
Z
deconv  
zchen0211 已提交
44 45
        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")
Y
Yu Yang 已提交
46 47
        output = conv2dtranspose_forward_naive(
            input_, filter_, conv2dtranspose_param).astype('float32')
Z
deconv  
zchen0211 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        # print 'deconv output py', output, output.shape

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            # 'dilations': self.dilations
        }
        self.outputs = {'Output': output}

    def test_check_output(self):
        print 'check output here'
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            set(['Input', 'Filter']), 'Output', max_relative_error=0.05)

    def test_check_grad_no_filter(self):
        self.check_grad(
            ['Input'],
            'Output',
            max_relative_error=0.05,
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        self.check_grad(
            ['Filter'],
            'Output',
            max_relative_error=0.05,
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
Z
zchen0211 已提交
89
        self.op_type = "conv2dtranspose"
Z
deconv  
zchen0211 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102


"""
class TestCudnn(TestConv2dOp):
    def init_group(self):
        self.groups = 1

    def init_op_type(self):
        self.op_type = "conv_cudnn"
"""

if __name__ == '__main__':
    unittest.main()