sum_op.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Q
QI JUN 已提交
14
#include "paddle/framework/var_type_inference.h"
Y
Yu Yang 已提交
15
#include "paddle/operators/net_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
Q
Qiao Longfei 已提交
27 28 29
    auto x_dims = ctx->GetInputsDim("X");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30

Q
Qiao Longfei 已提交
31
    size_t N = x_dims.size();
Q
qijun 已提交
32
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
33 34

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
35 36
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
37
      PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape");
Q
qijun 已提交
38
    }
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
41 42 43 44 45
  }
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
46
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
47
      : OpProtoAndCheckerMaker(proto, op_checker) {
48 49
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
50
    AddComment(R"DOC(
51 52 53 54 55
Sum the input tensors.

All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with the first input.
)DOC");
56 57 58
  }
};

Q
QI JUN 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto& inputs = op_desc.Input("X");
    auto default_var_type = framework::VarDesc::SELECTED_ROWS;

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
          return block->Var(name)->GetType() == framework::VarDesc::LOD_TENSOR;
        });
    if (any_input_is_lod_tensor) {
      default_var_type = framework::VarDesc::LOD_TENSOR;
    }

    auto out_var_name = op_desc.Output("Out").front();
    block->Var(out_var_name)->SetType(default_var_type);
  }
};

79
class SumGradMaker : public framework::GradOpDescMakerBase {
80
 public:
81
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
82

Y
Yu Yang 已提交
83 84
  std::vector<std::unique_ptr<framework::OpDescBind>> operator()()
      const override {
85
    auto x_grads = InputGrad("X");
Y
Yu Yang 已提交
86
    std::vector<std::unique_ptr<framework::OpDescBind>> grad_ops;
87 88 89 90
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
91 92 93 94 95 96
                     auto* grad_op = new framework::OpDescBind();
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
                     return std::unique_ptr<framework::OpDescBind>(grad_op);
97 98
                   });
    return grad_ops;
99 100 101 102 103 104 105
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
106

Q
QI JUN 已提交
107 108
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Y
Yu Yang 已提交
109 110
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>,
                       ops::SumKernel<paddle::platform::CPUPlace, double>);