pool_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
fix doc  
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
fix doc  
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("globalPooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
75
      "(Tensor) The input tensor of pooling operator. "
76 77 78
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of feature.");
  AddOutput("Out",
C
chengduoZH 已提交
79
            "(Tensor) The output tensor of pooling operator."
80 81 82 83 84
            "The format of output tensor is also NCHW."
            "Where N is batch size, C is "
            "the number of channels, H and W is the height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
85
  AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
86 87
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
88
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
89 90 91 92 93 94
  AddAttr<std::vector<int>>("ksize",
                            "(vector ), the pooling window size(height, width) "
                            "of pooling operator."
                            "If globalPooling = true, ksize and paddings will "
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
95
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
96 97
  AddAttr<bool>("globalPooling",
                "(bool default: false), whether to use the global pooling."
C
fix bug  
chengduoZH 已提交
98
                "If globalPooling = true, ksize and paddings will be ignored.")
99
      .SetDefault(false);
C
fix doc  
chengduoZH 已提交
100 101 102
  AddAttr<std::vector<int>>(
      "strides",
      "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
103
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
104 105 106
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
fix bug  
chengduoZH 已提交
107 108
      "(vector defalut:{0,0}), paddings(height, width) of pooling operator."
      "If globalPooling = true, paddings and ksize will be ignored.")
109
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
110
  // TypedAttrChecker don't support vector type.)
111 112

  AddComment(R"DOC(
C
chengduoZH 已提交
113
The pooling2d operation calculates the output based on
114
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
115 116 117 118
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
119 120 121 122 123 124 125 126 127 128
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
129
)DOC");
130 131 132 133 134 135 136
}

Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
137
      "(Tensor) The input tensor of pooling operator. "
138 139 140 141
      "The format of input tensor is NCDHW. Where N is batch size, C is "
      "the number of channels, D, H and W is the depth, height and width of "
      "feature.");
  AddOutput("Out",
C
chengduoZH 已提交
142
            "(Tensor) The output tensor of pooling operator."
143 144 145 146 147
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
            "the number of channels, D, H and W is the depth, height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
148
  AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
149 150
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
151
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
152 153 154 155 156 157 158 159
  AddAttr<std::vector<int>>("ksize",
                            "(vector ), the pooling window size(depth, height, "
                            "width) of pooling "
                            "operator."
                            "If globalPooling = true, ksize and paddings wille "
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
160 161
  AddAttr<bool>("globalPooling",
                "(bool default: false), whether to use the global pooling."
C
fix bug  
chengduoZH 已提交
162
                "If globalPooling = true, ksize and paddings wille be ignored.")
163 164
      .SetDefault(false);
  AddAttr<std::vector<int>>("strides",
C
fix doc  
chengduoZH 已提交
165 166
                            "(vector, default:{1,1,1}), strides(depth, height, "
                            "width) of pooling operator.")
167 168
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
169 170 171 172 173
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector defalut:{0,0,0}), paddings(depth, height, "
      "width) of pooling operator."
      "If globalPooling = true, ksize and paddings wille be ignored.")
174 175 176 177
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
C
chengduoZH 已提交
178
The pooling3d operation calculates the output based on
179
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
180 181 182 183
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
184 185 186 187 188 189 190 191 192 193 194
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
195
)DOC");
196
}
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);