prune.cc 3.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/prune.h"

#include <algorithm>
#include <set>
#include <string>
#include <vector>

#include <glog/logging.h>

namespace paddle {
namespace framework {

const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";

bool HasDependentVar(const OpDesc& op_desc,
                     const std::set<std::string>& dependent_vars) {
  for (auto& var : op_desc.outputs()) {
    for (auto& argu : var.arguments()) {
      if (dependent_vars.count(argu) != 0) {
        return true;
      }
    }
  }
  return false;
}

Y
Yang Yang 已提交
42 43 44 45 46 47 48
bool IsTarget(const OpDesc& op_desc) {
  if (op_desc.has_is_target()) {
    return op_desc.is_target();
  }
  return false;
}

49
void prune_impl(const ProgramDesc& input, ProgramDesc* output, int block_id) {
Y
Yang Yang 已提交
50 51 52
  // TODO(tonyyang-svail):
  //    - will change to use multiple blocks for RNN op and Cond Op

Y
Yang Yang 已提交
53
  auto& block = input.blocks(block_id);
Y
Yang Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  auto& ops = block.ops();

  bool expect_feed = true;
  for (auto& op_desc : ops) {
    PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed,
                   "All FeedOps are at the beginning of the ProgramDesc");
    expect_feed = (op_desc.type() == kFeedOpType);
  }

  bool expect_fetch = true;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
    PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch,
                   "All FetchOps must at the end of the ProgramDesc");
    expect_fetch = (op_desc.type() == kFetchOpType);
  }

  std::set<std::string> dependent_vars;
  std::vector<bool> should_run;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;

Y
Yang Yang 已提交
76
    if (IsTarget(op_desc) || HasDependentVar(op_desc, dependent_vars)) {
Y
Yang Yang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
      // insert its input to the dependency graph
      for (auto& var : op_desc.inputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.insert(argu);
        }
      }

      should_run.push_back(true);
    } else {
      should_run.push_back(false);
    }
  }

  // since we are traversing the ProgramDesc in reverse order
  // we reverse the should_run vector
  std::reverse(should_run.begin(), should_run.end());

94 95
  *output = input;
  auto* op_field = output->mutable_blocks(block_id)->mutable_ops();
Y
Yang Yang 已提交
96 97 98
  op_field->Clear();
  for (size_t i = 0; i < should_run.size(); ++i) {
    if (should_run[i]) {
Y
Yang Yang 已提交
99
      *op_field->Add() = input.blocks(block_id).ops(i);
Y
Yang Yang 已提交
100 101
    }
  }
Y
Yang Yang 已提交
102
}
Y
Yang Yang 已提交
103

104 105
// TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies
void Prune(const ProgramDesc& input, ProgramDesc* output) {
Y
Yang Yang 已提交
106
  prune_impl(input, output, 0);
Y
Yang Yang 已提交
107 108 109 110
}

}  // namespace framework
}  // namespace paddle