test_lstm_op.py 9.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import unittest
import numpy as np
from op_test import OpTest

19 20 21 22
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0

23 24 25 26 27 28

def identity(x):
    return x


def sigmoid(x):
29 30 31 32
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))
33 34 35


def tanh(x):
36 37 38
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.
39 40 41 42 43 44


def relu(x):
    return np.maximum(x, 0)


45
ACTIVATION = {
D
dangqingqing 已提交
46 47 48 49 50 51 52
    'identity': identity,
    'sigmoid': sigmoid,
    'tanh': tanh,
    'relu': relu
}


53 54 55 56 57 58 59 60 61
def lstm(
        input,  # T x 4D
        lod,  # 1 x N
        h0=None,  # N x D
        c0=None,  # N x D
        w_h=None,  # D x 4D
        w_b=None,  # 1 x 4D
        w_c=None,  # 1 x 3D
        is_reverse=False,
D
dangqingqing 已提交
62 63 64 65
        act_gate=None,
        act_cell=None,
        act_cand=None):
    def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand):
66 67 68
        g = np.dot(h_pre, w_h)  # 1 x 4D
        g = g + x
        g = np.reshape(g, (1, g.size))
D
dangqingqing 已提交
69
        c, g_i, g_f, g_o = np.split(g, 4, axis=1)
70
        if w_c is None:
D
dangqingqing 已提交
71 72
            g_i = act_gate(g_i)  # 1 x D
            g_f = act_gate(g_f)  # 1 x D
73 74
        else:
            w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
75 76
            g_i = act_gate(g_i + w_ic * c_pre)  # 1 x D
            g_f = act_gate(g_f + w_fc * c_pre)  # 1 x D
D
dangqingqing 已提交
77
        c = g_f * c_pre + g_i * act_cand(c)  # 1 x D
78 79

        if w_c is None:
D
dangqingqing 已提交
80
            g_o = act_gate(g_o)  # 1 x D
81 82
        else:
            _, _, w_oc = np.split(w_c, 3, axis=1)
D
dangqingqing 已提交
83 84
            g_o = act_gate(g_o + w_oc * c)  # 1 x D
        h = g_o * act_cell(c)
D
dangqingqing 已提交
85
        return h, c
86

D
dangqingqing 已提交
87 88 89 90 91 92 93
    def _reverse(x, lod):
        y = np.zeros_like(x)
        for i in range(len(lod) - 1):
            b, e = lod[i], lod[i + 1]
            y[b:e, :] = np.flip(x[b:e, :], 0)
        return y

94 95 96 97
    offset = lod[0]
    batch_size = len(offset) - 1
    hidden = []
    cell = []
D
dangqingqing 已提交
98
    input = _reverse(input, offset) if is_reverse else input
99 100 101 102 103 104 105
    if w_b is not None:
        input = input + np.tile(w_b, (offset[-1], 1))
    for i in range(batch_size):
        # compute one sequence
        seq_len = offset[i + 1] - offset[i]
        x = input[offset[i]:offset[i + 1], :]
        h_pre = h0[i]  # 1 x D
106
        c_pre = c0[i]  # 1 x D
107 108
        for j in range(seq_len):
            # compute one step
D
dangqingqing 已提交
109 110
            h_pre, c_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate,
                                 act_cell, act_cand)
111 112 113
            hidden.append(h_pre.flatten())
            cell.append(c_pre.flatten())

114 115
    hidden = np.array(hidden).astype('float64')
    cell = np.array(cell).astype('float64')
D
dangqingqing 已提交
116 117 118 119

    hidden = _reverse(hidden, offset) if is_reverse else hidden
    cell = _reverse(cell, offset) if is_reverse else cell

120 121
    assert hidden.shape == (input.shape[0], input.shape[1] / 4)
    assert cell.shape == (input.shape[0], input.shape[1] / 4)
D
dangqingqing 已提交
122
    return hidden, cell
123 124


D
dangqingqing 已提交
125
class TestLstmOp(OpTest):
126
    def set_argument(self):
127
        self.lod = [[0, 2, 5, 7]]
128 129
        self.D = 16

130 131 132
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
D
dangqingqing 已提交
133

D
dangqingqing 已提交
134
        self.has_initial_state = False
D
dangqingqing 已提交
135
        self.is_reverse = False
D
dangqingqing 已提交
136
        self.use_peepholes = True
D
dangqingqing 已提交
137 138

    def setUp(self):
139
        self.set_argument()
140
        self.op_type = 'lstm'
D
dangqingqing 已提交
141 142 143 144

        T = self.lod[0][-1]
        N = len(self.lod[0]) - 1

145
        x = np.random.normal(size=(T, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
146 147 148 149 150 151
        if self.has_initial_state:
            h0 = np.random.normal(size=(N, self.D)).astype('float64')
            c0 = np.random.normal(size=(N, self.D)).astype('float64')
        else:
            h0 = np.zeros((N, self.D)).astype('float64')
            c0 = np.zeros((N, self.D)).astype('float64')
152
        w = np.random.normal(size=(self.D, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
153 154 155 156
        if self.use_peepholes:
            b = np.random.normal(size=(1, 7 * self.D)).astype('float64')
        else:
            b = np.random.normal(size=(1, 4 * self.D)).astype('float64')
D
dangqingqing 已提交
157

D
dangqingqing 已提交
158 159
        w_b = b[:, 0:4 * self.D]
        w_c = b[:, 4 * self.D:] if self.use_peepholes else None
D
dangqingqing 已提交
160
        h, c = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse,
161 162
                    ACTIVATION[self.act_gate], ACTIVATION[self.act_cell],
                    ACTIVATION[self.act_cand])
163

164 165
        self.inputs = {'Input': (x, self.lod), 'Weight': w}

D
dangqingqing 已提交
166
        self.inputs['Bias'] = b
167

D
dangqingqing 已提交
168 169 170
        if self.has_initial_state:
            self.inputs['H0'] = h0
            self.inputs['C0'] = c0
171

172 173 174 175
        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
176
        self.attrs = {
D
dangqingqing 已提交
177
            'use_peepholes': self.use_peepholes,
178 179 180 181
            'is_reverse': self.is_reverse,
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
182 183
        }

D
dangqingqing 已提交
184
    def test_check_output(self):
D
dangqingqing 已提交
185
        self.check_output(atol=1e-8)
186

D
dangqingqing 已提交
187
    def test_check_grad(self):
D
dangqingqing 已提交
188 189 190 191 192
        # TODO(qingqing) remove folowing lines after the check_grad is refined.
        N = len(self.lod[0]) - 1
        self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
        self.outputs['BatchCellPreAct'] = np.zeros(
            (N, self.D)).astype('float64')
193
        self.check_grad(
D
dangqingqing 已提交
194
            ['Input', 'Weight', 'Bias'], ['Hidden'], max_relative_error=5e-4)
195 196


197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
# class TestLstmOpHasInitial(TestLstmOp):
#     def set_argument(self):
#         self.lod = [[0, 2, 5, 7]]
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = True
#         self.is_reverse = True
#         self.use_peepholes = True

#     def test_check_grad(self):
#         # TODO(qingqing) remove folowing lines after the check_grad is refined.
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0', 'C0'], ['Hidden'],
#             max_relative_error=5e-4)

#     def test_check_grad_ingore_bias(self):
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Bias'))

#     def test_check_grad_ingore_weight(self):
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Weight'))

#     def test_check_grad_ingore_input(self):
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Weight', 'Bias'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('Input'))

#     def test_check_grad_ingore_h0(self):
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'C0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('H0'))

#     def test_check_grad_ingore_c0(self):
#         N = len(self.lod[0]) - 1
#         self.outputs['BatchGate'] = np.zeros((N, 4 * self.D)).astype('float64')
#         self.outputs['BatchCellPreAct'] = np.zeros(
#             (N, self.D)).astype('float64')
#         self.check_grad(
#             ['Input', 'Weight', 'Bias', 'H0'], ['Hidden'],
#             max_relative_error=5e-4,
#             no_grad_set=set('C0'))

# class TestLstmOpRerverse(TestLstmOp):
#     def set_argument(self):
#         self.lod = [[0, 2, 5, 7]]
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = True

# class TestLstmOpNotUsePeepholes(TestLstmOp):
#     def set_argument(self):
#         self.lod = [[0, 2, 5, 7]]
#         self.D = 16

#         self.act_gate = 'sigmoid'
#         self.act_cell = 'tanh'
#         self.act_cand = 'tanh'

#         self.has_initial_state = False
#         self.is_reverse = True
#         self.use_peepholes = False
295 296

if __name__ == '__main__':
297
    unittest.main()