lod_tensor_test.cc 7.8 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/lod_tensor.h"
16

Y
Yu Yang 已提交
17 18 19
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"

20 21
#include <glog/logging.h>
#include <gtest/gtest.h>
22
#include <algorithm>
23
#include <memory>
24
#include <vector>
25 26 27 28

namespace paddle {
namespace framework {

D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39
TEST(LoD, data) {
  LoD lod{{0, 1, 2}};
  lod.push_back({0, 2, 4, 5});
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));

  auto& v = lod[0];
  for (size_t i = 0; i < v.size(); ++i) {
    EXPECT_EQ(v[i], i);
  }
}

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
TEST(LodExpand, test) {
  LoD lod{{0, 2}};
  LoDTensor tensor;
  tensor.set_lod(lod);
  tensor.Resize({2, 1});
  tensor.mutable_data<float>(platform::CPUPlace());
  tensor.data<float>()[0] = 0;
  tensor.data<float>()[1] = 1;

  LoD target;
  target.emplace_back(std::vector<size_t>{0, 3, 5});
  auto new_tensor = LodExpand<float>(tensor, target, 0UL, platform::CPUPlace());
  std::vector<int> result{{0, 0, 0, 1, 1}};
  for (size_t i = 0; i < 5; i++) {
    ASSERT_EQ(new_tensor.data<float>()[i], result[i]);
  }
56 57
}

58 59
TEST(LoD, GetFineGrainedLoDLength) {
  LoD lod;
60 61
  lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));
62
  lod.push_back(
63
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}));
64

65 66 67 68 69
  auto lod_and_offset =
      paddle::framework::GetSubLoDAndAbsoluteOffset(lod, 1, 2, 0);
  LoD lod_length = lod_and_offset.first;
  size_t start_offset = lod_and_offset.second.first;
  size_t end_offset = lod_and_offset.second.second;
70

71
  LoD expected;
72 73 74 75 76
  expected.push_back(std::vector<size_t>{2});
  expected.push_back(std::vector<size_t>{2, 2});
  expected.push_back(std::vector<size_t>{2, 3, 4, 2});
  EXPECT_EQ(lod_length, expected);
  EXPECT_EQ(start_offset, 15UL);
77
  EXPECT_EQ(end_offset, 26UL);
78 79 80
}

TEST(LoD, AppendLoD) {
81 82 83 84
  LoD lod_lens;
  lod_lens.push_back(std::vector<size_t>({2}));
  lod_lens.push_back(std::vector<size_t>({2, 2}));
  lod_lens.push_back(std::vector<size_t>({2, 3, 4, 2}));
85 86

  LoD origin;
87 88 89
  origin.push_back(std::vector<size_t>({0, 2}));
  origin.push_back(std::vector<size_t>({0, 1, 6}));
  origin.push_back(std::vector<size_t>({0, 2, 5, 7, 10, 12, 15}));
90 91 92 93

  paddle::framework::AppendLoD(&origin, lod_lens);

  LoD expected;
94 95
  expected.push_back(std::vector<size_t>({0, 2, 4}));
  expected.push_back(std::vector<size_t>({0, 1, 6, 8, 10}));
96
  expected.push_back(
97
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}));
98 99 100
  EXPECT_EQ(origin, expected);
}

Q
Qiao Longfei 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
TEST(LoD, ToAbsOffset) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  LoD abs_lod = paddle::framework::ToAbsOffset(relative_lod);

  LoD expected;
  expected.push_back(std::vector<size_t>({0, 5}));
  expected.push_back(std::vector<size_t>({0, 2, 5}));
  expected.push_back(std::vector<size_t>({0, 2, 4, 5}));

  EXPECT_EQ(abs_lod, expected);
}

Y
Yang Yang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
TEST(LoD, SplitLoDTensor) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));

  platform::CPUPlace place;
  LoDTensor lod_tensor;
  lod_tensor.Resize({20, 1});
  float* dst_ptr = lod_tensor.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor.numel(); ++i) {
    dst_ptr[i] = i;
  }
  lod_tensor.set_lod(lod);

  std::vector<platform::Place> places{platform::CPUPlace(),
                                      platform::CPUPlace()};
  LoD lod0;
  lod0.push_back(std::vector<size_t>({0, 2, 4}));
  lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
  LoD lod1;
  lod1.push_back(std::vector<size_t>({0, 1, 2}));
  lod1.push_back(std::vector<size_t>({0, 2, 7}));

  auto lods = lod_tensor.SplitLoDTensor(places);
  EXPECT_EQ(lods[0].lod(), lod0);
  EXPECT_EQ(lods[1].lod(), lod1);
}

Y
Yang Yang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
TEST(LoD, MergeLoDTensor) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));

  platform::CPUPlace place;

  LoDTensor lod_tensor0;
  LoD lod0;
  lod0.push_back(std::vector<size_t>({0, 2, 4}));
  lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
  lod_tensor0.set_lod(lod0);

  lod_tensor0.Resize({13, 1});
  float* dst_ptr = lod_tensor0.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor0.numel(); ++i) {
    dst_ptr[i] = i;
  }

  LoDTensor lod_tensor1;
  LoD lod1;
  lod1.push_back(std::vector<size_t>({0, 1, 2}));
  lod1.push_back(std::vector<size_t>({0, 2, 7}));
  lod_tensor1.set_lod(lod1);
  lod_tensor1.Resize({7, 1});
  dst_ptr = lod_tensor1.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor1.numel(); ++i) {
    dst_ptr[i] = i;
  }

  std::vector<const LoDTensor*> lods{&lod_tensor0, &lod_tensor1};

  LoDTensor lod_tensor;
  lod_tensor.MergeLoDTensor(lods, place);
  EXPECT_EQ(lod_tensor.lod(), lod);
}

Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
TEST(LoD, CheckLoD) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  // check compatible
  ASSERT_TRUE(CheckLoD(relative_lod));
  relative_lod[1].back()++;
  ASSERT_FALSE(CheckLoD(relative_lod));
  relative_lod[1].back()--;  // recover it

  // check empty
  LoD empty_lod;
  ASSERT_TRUE(CheckLoD(empty_lod));

  // check less than 2 offsets in a level
  LoD some_lod0;
  some_lod0.push_back(std::vector<size_t>({0}));
  ASSERT_FALSE(CheckLoD(some_lod0));

  // check with underlying tensor storage.
  ASSERT_TRUE(CheckLoD(relative_lod, 5));
  ASSERT_FALSE(CheckLoD(relative_lod, 9));
}

TEST(LoD, CheckAbsLoD) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  auto abs_lod = ToAbsOffset(relative_lod);

  ASSERT_TRUE(CheckAbsLoD(abs_lod));

  // check less than 2 offsets in a level.

  // check the last item should be compatible with tensor height.
  abs_lod.back().back()++;
  ASSERT_FALSE(CheckAbsLoD(abs_lod));
  abs_lod.back().back()--;  // restore

  // check less than 2 offsets in a lod.
  LoD abs_lod0;
  abs_lod0.push_back(std::vector<size_t>({0}));
  ASSERT_FALSE(CheckAbsLoD(abs_lod0));
}
Y
Yu Yang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

TEST(LoDTensor, RecordIO) {
  LoDTensor tensor;
  int* tmp = tensor.mutable_data<int>(make_ddim({4, 5}), platform::CPUPlace());
  for (int i = 0; i < 20; ++i) {
    tmp[i] = i;
  }

  std::stringstream* stream = new std::stringstream();
  auto& ctx =
      *platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
  {
    recordio::Writer writer(stream, recordio::Compressor::kSnappy);
    WriteToRecordIO(writer, {tensor, tensor}, ctx);
    WriteToRecordIO(writer, {tensor, tensor}, ctx);
    writer.Flush();
  }

  auto assert_tensor_ok = [](const LoDTensor& tensor) {
    for (int i = 0; i < 20; ++i) {
      ASSERT_EQ(tensor.data<int>()[i], i);
    }
  };

  {
    std::unique_ptr<std::istream> stream_ptr(stream);
    recordio::Scanner scanner(std::move(stream_ptr));
    auto tensors = ReadFromRecordIO(scanner, ctx);
    ASSERT_EQ(tensors.size(), 2);
    assert_tensor_ok(tensors[0]);
    assert_tensor_ok(tensors[1]);
    tensors = ReadFromRecordIO(scanner, ctx);
    ASSERT_EQ(tensors.size(), 2);
    assert_tensor_ok(tensors[0]);
    assert_tensor_ok(tensors[1]);
  }
}

268 269
}  // namespace framework
}  // namespace paddle