README.md 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
English | [简体中文](README_cn.md)

# MCFairMOT (Multi-class FairMOT)

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Citations](#Citations)

## Introduction

MCFairMOT is the Multi-class extended version of [FairMOT](https://arxiv.org/abs/2004.01888).

## Model Zoo
### MCFairMOT DLA-34 Results on VisDrone2019 Val Set
| backbone       | input shape | MOTA | IDF1 |  IDS    |   FPS    | download | config |
| :--------------| :------- | :----: | :----: | :---:  | :------: | :----: |:----: |
| DLA-34         | 1088x608 |  24.3  |  41.6  |  2314  |    -     |[model](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams) | [config](./mcfairmot_dla34_30e_1088x608_visdrone.yml) |
| HRNetV2-W18    | 1088x608 |  20.4  |  39.9  |  2603  |    -     |[model](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.pdparams) | [config](./mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.yml) |

**Notes:**
 MOTA is the average MOTA of 10 catecories in the VisDrone2019 MOT dataset, and its value is also equal to the average MOTA of all the evaluated video sequences.


## Getting Start

### 1. Training
Training MCFairMOT on 8 GPUs with following command
```bash
python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml
```

### 2. Evaluation
Evaluating the track performance of MCFairMOT on val dataset in single GPU with following commands:
```bash
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams

# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=output/mcfairmot_dla34_30e_1088x608_visdrone/model_final.pdparams
```
**Notes:**
 The default evaluation dataset is VisDrone2019 MOT val-set. If you want to change the evaluation dataset, please refer to the following code and modify `configs/datasets/mcmot.yml`
```
EvalMOTDataset:
  !MOTImageFolder
    dataset_dir: dataset/mot
    data_root: your_dataset/images/val
    keep_ori_im: False # set True if save visualization images or video
```

### 3. Inference
Inference a vidoe on single GPU with following command:
```bash
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams --video_file={your video name}.mp4  --save_videos
```
**Notes:**
 Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.


### 4. Export model
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams
```

### 5. Using exported model for python inference
```bash
python deploy/python/mot_jde_infer.py --model_dir=output_inference/mcfairmot_dla34_30e_1088x608_visdrone --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**Notes:**
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_mot_txts` to save the txt result file, or `--save_images` to save the visualization images.


## Citations
```
@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}

@ARTICLE{9573394,
  author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Detection and Tracking Meet Drones Challenge}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3119563}
}
```