operator.h 7.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"

Q
Qiao Longfei 已提交
31 32 33 34
namespace paddle {
namespace framework {

class OperatorBase;
Q
Qiao Longfei 已提交
35
using OperatorPtr = std::shared_ptr<OperatorBase>;
Q
Qiao Longfei 已提交
36 37 38 39 40 41 42 43
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
44 45 46 47 48 49 50
  /// If a variable is a empty variable, that name will be used.
  static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }

  /// If a variable is a temporary variable, that name will be set in Python,
  /// but it will be convert to a unique name in scope after OpCreator.
  static std::string TMP_VAR_NAME() { return "@TEMP@"; }

Q
Qiao Longfei 已提交
51 52 53 54 55 56 57 58 59 60 61
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

  std::string DebugString() const;

Q
Qiao Longfei 已提交
62 63 64 65
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
66 67
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Q
Qiao Longfei 已提交
68
  virtual void InferShape(const ScopePtr& scope) const = 0;
Q
Qiao Longfei 已提交
69 70

  /// Net will call this function to Run an op.
Q
Qiao Longfei 已提交
71
  virtual void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
72 73
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yan Chunwei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87
  // Get a input with argument's name described in `op_proto`
  const std::string& Input(const std::string& name) const;
  // Get a input which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Inputs(const std::string& name) const;
  // Get a output with argument's name described in `op_proto`
  const std::string& Output(const std::string& name) const;
  // Get an output which has multiple variables.
  // TODO add a vector_view to prevent memory copy.
  std::vector<std::string> Outputs(const std::string& name) const;

  // init in_out_idxs_ to accelerate argument's offset lookup.
  void CreateInOutOffsetMap(const OpProto& proto);

Q
Qiao Longfei 已提交
88
 public:
Q
Qiao Longfei 已提交
89
  std::string type_;
Q
Qiao Longfei 已提交
90 91 92
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  // store the arguments' offset described in op_desc.
  std::unordered_map<std::string, int> in_out_idxs_;
};

class KernelContext {
 public:
  KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
                const platform::DeviceContext& device_context)
      : op_(*op), scope_(scope), device_context_(device_context) {}

  const Variable* Input(int index) const {
    return scope_->GetVariable(op_.inputs_[index]);
  }

  Variable* Output(int index) const {
    return scope_->GetVariable(op_.outputs_[index]);
  }

  const Variable* Input(const std::string& name) const {
    return scope_->GetVariable(op_.Input(name));
  }

  const Variable* Output(const std::string& name) const {
    return scope_->GetVariable(op_.Output(name));
  }

  const std::vector<const Variable*> Inputs(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

  const std::vector<const Variable*> Outputs(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
    std::transform(
        names.begin(), names.end(), res.begin(),
        [this](const std::string& name) { return scope_->GetVariable(name); });
    return res;
  }

  const OperatorBase& op_;
  const std::shared_ptr<Scope>& scope_;
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
140 141
};

Y
Yu Yang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
class OpKernel {
 public:
  /**
   * KernelContext is the only parameter of Kernel Run function.
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
   * KernelContext. User should construct it before run the Operator.
   */
  virtual void Compute(const KernelContext& context) const = 0;

  virtual ~OpKernel() {}
};

Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
template <typename T>
struct VarToTensor {};

template <>
struct VarToTensor<Tensor*> {
  Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
};

template <>
struct VarToTensor<const Tensor*> {
  const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
};

Q
Qiao Longfei 已提交
168 169
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
170 171
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
172

Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

    bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
190

Q
Qiao Longfei 已提交
191
  void Run(const ScopePtr& scope,
Y
Yu Yang 已提交
192
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
193
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
Y
Yan Chunwei 已提交
194
    opKernel->Compute(KernelContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
195 196
  }

Y
Yu Yang 已提交
197 198 199 200
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
201
  }
Y
Yan Chunwei 已提交
202

Y
Yu Yang 已提交
203 204 205 206 207 208
  void InferShape(const std::shared_ptr<Scope>& scope) const final {
    std::vector<const Tensor*> ins;
    VarNamesToTensors(scope, inputs_, &ins);
    std::vector<Tensor*> outs;
    VarNamesToTensors(scope, outputs_, &outs);
    InferShape(ins, outs);
Y
Yu Yang 已提交
209
  };
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

 private:
  template <typename T>
  void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
                         const std::vector<std::string>& var_names,
                         std::vector<T>* container) const {
    container->reserve(var_names.size());
    VarToTensor<T> convert;
    for (auto& name : var_names) {
      auto var = scope->GetVariable(name);
      if (var != nullptr) {
        container->push_back(convert(var));
      } else {
        container->push_back(nullptr);
      }
    }
  }

 protected:
  virtual void InferShape(const std::vector<const Tensor*>& inputs,
                          const std::vector<Tensor*>& outputs) const = 0;
Q
Qiao Longfei 已提交
231 232 233 234
};

}  // namespace framework
}  // namespace paddle