test_desc_clone.py 6.2 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
gongweibao 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
M
minqiyang 已提交
30
import six
G
gongweibao 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
M
minqiyang 已提交
59 60
    param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
                   ] + [SIZE]
G
gongweibao 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size)
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


def operator_equal(a, b):
    for k, v in a.__dict__.iteritems():
        if isinstance(v, fluid.framework.Program) or \
                isinstance(v, fluid.framework.Block):
            continue

        elif isinstance(v, core.OpDesc):
            if v.serialize_to_string() != b.__dict__[k].serialize_to_string():
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
            v0 = sorted(v.iteritems(), key=lambda x: x[0])
            v1 = sorted(b.__dict__[k].iteritems(), key=lambda x: x[0])

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

        elif (v != b.__dict__[k]):
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
    for k, v in a.__dict__.iteritems():
        if isinstance(v, core.ProgramDesc) or isinstance(
                v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
            continue

        elif k == "ops":
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
            assert (len(a.ops) == len(b.ops))

        elif isinstance(v, collections.OrderedDict):
            v0 = sorted(v.iteritems(), key=lambda x: x[0])
            v1 = sorted(b.__dict__[k].iteritems(), key=lambda x: x[0])

            if v0 != v1:
                raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif (v != b.__dict__[k]):
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
    for k, v in a.__dict__.iteritems():
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
                    raise ValueError("In operator_equal not equal:{0}\n".format(
                        k))
                    return False
            assert (len(a.blocks) == len(b.blocks))

        elif (v != b.__dict__[k]):
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


class TestDistMnist(unittest.TestCase):
    def test_desc_clone(self):
        get_model(batch_size=20)

        pserver_endpoints = "127.0.0.1:9123"
        trainers = 1
        current_endpoint = "127.0.0.1:9123"
        t = get_transpiler(0,
                           fluid.default_main_program(), pserver_endpoints,
                           trainers)

        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        main = pserver_prog.clone()
        startup = startup_prog.clone()

        self.assertTrue(program_equal(main, pserver_prog))
        self.assertTrue(program_equal(startup, startup_prog))


if __name__ == "__main__":
    unittest.main()